ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssintclm Unicode version

Theorem lssintclm 13476
Description: The intersection of an inhabited set of subspaces is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypothesis
Ref Expression
lssintcl.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lssintclm  |-  ( ( W  e.  LMod  /\  A  C_  S  /\  E. w  w  e.  A )  ->  |^| A  e.  S
)
Distinct variable groups:    w, A    w, W
Allowed substitution hint:    S( w)

Proof of Theorem lssintclm
Dummy variables  a  b  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2178 . 2  |-  ( ( W  e.  LMod  /\  A  C_  S  /\  E. w  w  e.  A )  ->  (Scalar `  W )  =  (Scalar `  W )
)
2 eqidd 2178 . 2  |-  ( ( W  e.  LMod  /\  A  C_  S  /\  E. w  w  e.  A )  ->  ( Base `  (Scalar `  W ) )  =  ( Base `  (Scalar `  W ) ) )
3 eqidd 2178 . 2  |-  ( ( W  e.  LMod  /\  A  C_  S  /\  E. w  w  e.  A )  ->  ( Base `  W
)  =  ( Base `  W ) )
4 eqidd 2178 . 2  |-  ( ( W  e.  LMod  /\  A  C_  S  /\  E. w  w  e.  A )  ->  ( +g  `  W
)  =  ( +g  `  W ) )
5 eqidd 2178 . 2  |-  ( ( W  e.  LMod  /\  A  C_  S  /\  E. w  w  e.  A )  ->  ( .s `  W
)  =  ( .s
`  W ) )
6 lssintcl.s . . 3  |-  S  =  ( LSubSp `  W )
76a1i 9 . 2  |-  ( ( W  e.  LMod  /\  A  C_  S  /\  E. w  w  e.  A )  ->  S  =  ( LSubSp `  W ) )
8 intssuni2m 3870 . . . 4  |-  ( ( A  C_  S  /\  E. w  w  e.  A
)  ->  |^| A  C_  U. S )
983adant1 1015 . . 3  |-  ( ( W  e.  LMod  /\  A  C_  S  /\  E. w  w  e.  A )  ->  |^| A  C_  U. S
)
10 eqid 2177 . . . . . . . . 9  |-  ( Base `  W )  =  (
Base `  W )
1110, 6lssssg 13452 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  y  e.  S )  ->  y  C_  ( Base `  W
) )
12 velpw 3584 . . . . . . . 8  |-  ( y  e.  ~P ( Base `  W )  <->  y  C_  ( Base `  W )
)
1311, 12sylibr 134 . . . . . . 7  |-  ( ( W  e.  LMod  /\  y  e.  S )  ->  y  e.  ~P ( Base `  W
) )
1413ex 115 . . . . . 6  |-  ( W  e.  LMod  ->  ( y  e.  S  ->  y  e.  ~P ( Base `  W
) ) )
1514ssrdv 3163 . . . . 5  |-  ( W  e.  LMod  ->  S  C_  ~P ( Base `  W
) )
16 sspwuni 3973 . . . . 5  |-  ( S 
C_  ~P ( Base `  W
)  <->  U. S  C_  ( Base `  W ) )
1715, 16sylib 122 . . . 4  |-  ( W  e.  LMod  ->  U. S  C_  ( Base `  W
) )
18173ad2ant1 1018 . . 3  |-  ( ( W  e.  LMod  /\  A  C_  S  /\  E. w  w  e.  A )  ->  U. S  C_  ( Base `  W ) )
199, 18sstrd 3167 . 2  |-  ( ( W  e.  LMod  /\  A  C_  S  /\  E. w  w  e.  A )  ->  |^| A  C_  ( Base `  W ) )
20 simpl1 1000 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  A  C_  S  /\  E. w  w  e.  A
)  /\  y  e.  A )  ->  W  e.  LMod )
21 simp2 998 . . . . . . 7  |-  ( ( W  e.  LMod  /\  A  C_  S  /\  E. w  w  e.  A )  ->  A  C_  S )
2221sselda 3157 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  A  C_  S  /\  E. w  w  e.  A
)  /\  y  e.  A )  ->  y  e.  S )
23 eqid 2177 . . . . . . 7  |-  ( 0g
`  W )  =  ( 0g `  W
)
2423, 6lss0cl 13460 . . . . . 6  |-  ( ( W  e.  LMod  /\  y  e.  S )  ->  ( 0g `  W )  e.  y )
2520, 22, 24syl2anc 411 . . . . 5  |-  ( ( ( W  e.  LMod  /\  A  C_  S  /\  E. w  w  e.  A
)  /\  y  e.  A )  ->  ( 0g `  W )  e.  y )
2625ralrimiva 2550 . . . 4  |-  ( ( W  e.  LMod  /\  A  C_  S  /\  E. w  w  e.  A )  ->  A. y  e.  A  ( 0g `  W )  e.  y )
2710, 23lmod0vcl 13412 . . . . . 6  |-  ( W  e.  LMod  ->  ( 0g
`  W )  e.  ( Base `  W
) )
28 elintg 3854 . . . . . 6  |-  ( ( 0g `  W )  e.  ( Base `  W
)  ->  ( ( 0g `  W )  e. 
|^| A  <->  A. y  e.  A  ( 0g `  W )  e.  y ) )
2927, 28syl 14 . . . . 5  |-  ( W  e.  LMod  ->  ( ( 0g `  W )  e.  |^| A  <->  A. y  e.  A  ( 0g `  W )  e.  y ) )
30293ad2ant1 1018 . . . 4  |-  ( ( W  e.  LMod  /\  A  C_  S  /\  E. w  w  e.  A )  ->  ( ( 0g `  W )  e.  |^| A 
<-> 
A. y  e.  A  ( 0g `  W )  e.  y ) )
3126, 30mpbird 167 . . 3  |-  ( ( W  e.  LMod  /\  A  C_  S  /\  E. w  w  e.  A )  ->  ( 0g `  W
)  e.  |^| A
)
32 elex2 2755 . . 3  |-  ( ( 0g `  W )  e.  |^| A  ->  E. w  w  e.  |^| A )
3331, 32syl 14 . 2  |-  ( ( W  e.  LMod  /\  A  C_  S  /\  E. w  w  e.  A )  ->  E. w  w  e. 
|^| A )
3420adantlr 477 . . . . 5  |-  ( ( ( ( W  e. 
LMod  /\  A  C_  S  /\  E. w  w  e.  A )  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  |^| A  /\  b  e. 
|^| A ) )  /\  y  e.  A
)  ->  W  e.  LMod )
3522adantlr 477 . . . . 5  |-  ( ( ( ( W  e. 
LMod  /\  A  C_  S  /\  E. w  w  e.  A )  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  |^| A  /\  b  e. 
|^| A ) )  /\  y  e.  A
)  ->  y  e.  S )
36 simplr1 1039 . . . . 5  |-  ( ( ( ( W  e. 
LMod  /\  A  C_  S  /\  E. w  w  e.  A )  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  |^| A  /\  b  e. 
|^| A ) )  /\  y  e.  A
)  ->  x  e.  ( Base `  (Scalar `  W
) ) )
37 simplr2 1040 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  A  C_  S  /\  E. w  w  e.  A )  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  |^| A  /\  b  e. 
|^| A ) )  /\  y  e.  A
)  ->  a  e.  |^| A )
38 simpr 110 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  A  C_  S  /\  E. w  w  e.  A )  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  |^| A  /\  b  e. 
|^| A ) )  /\  y  e.  A
)  ->  y  e.  A )
39 elinti 3855 . . . . . 6  |-  ( a  e.  |^| A  ->  (
y  e.  A  -> 
a  e.  y ) )
4037, 38, 39sylc 62 . . . . 5  |-  ( ( ( ( W  e. 
LMod  /\  A  C_  S  /\  E. w  w  e.  A )  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  |^| A  /\  b  e. 
|^| A ) )  /\  y  e.  A
)  ->  a  e.  y )
41 simplr3 1041 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  A  C_  S  /\  E. w  w  e.  A )  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  |^| A  /\  b  e. 
|^| A ) )  /\  y  e.  A
)  ->  b  e.  |^| A )
42 elinti 3855 . . . . . 6  |-  ( b  e.  |^| A  ->  (
y  e.  A  -> 
b  e.  y ) )
4341, 38, 42sylc 62 . . . . 5  |-  ( ( ( ( W  e. 
LMod  /\  A  C_  S  /\  E. w  w  e.  A )  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  |^| A  /\  b  e. 
|^| A ) )  /\  y  e.  A
)  ->  b  e.  y )
44 eqid 2177 . . . . . 6  |-  (Scalar `  W )  =  (Scalar `  W )
45 eqid 2177 . . . . . 6  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
46 eqid 2177 . . . . . 6  |-  ( +g  `  W )  =  ( +g  `  W )
47 eqid 2177 . . . . . 6  |-  ( .s
`  W )  =  ( .s `  W
)
4844, 45, 46, 47, 6lssclg 13456 . . . . 5  |-  ( ( W  e.  LMod  /\  y  e.  S  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  y  /\  b  e.  y ) )  ->  (
( x ( .s
`  W ) a ) ( +g  `  W
) b )  e.  y )
4934, 35, 36, 40, 43, 48syl113anc 1250 . . . 4  |-  ( ( ( ( W  e. 
LMod  /\  A  C_  S  /\  E. w  w  e.  A )  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  |^| A  /\  b  e. 
|^| A ) )  /\  y  e.  A
)  ->  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  e.  y )
5049ralrimiva 2550 . . 3  |-  ( ( ( W  e.  LMod  /\  A  C_  S  /\  E. w  w  e.  A
)  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  |^| A  /\  b  e.  |^| A ) )  ->  A. y  e.  A  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  e.  y )
51 vex 2742 . . . . . . . . 9  |-  x  e. 
_V
5251a1i 9 . . . . . . . 8  |-  ( W  e.  LMod  ->  x  e. 
_V )
53 vscaslid 12623 . . . . . . . . 9  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
5453slotex 12491 . . . . . . . 8  |-  ( W  e.  LMod  ->  ( .s
`  W )  e. 
_V )
55 vex 2742 . . . . . . . . 9  |-  a  e. 
_V
5655a1i 9 . . . . . . . 8  |-  ( W  e.  LMod  ->  a  e. 
_V )
57 ovexg 5911 . . . . . . . 8  |-  ( ( x  e.  _V  /\  ( .s `  W )  e.  _V  /\  a  e.  _V )  ->  (
x ( .s `  W ) a )  e.  _V )
5852, 54, 56, 57syl3anc 1238 . . . . . . 7  |-  ( W  e.  LMod  ->  ( x ( .s `  W
) a )  e. 
_V )
59 plusgslid 12573 . . . . . . . 8  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
6059slotex 12491 . . . . . . 7  |-  ( W  e.  LMod  ->  ( +g  `  W )  e.  _V )
61 vex 2742 . . . . . . . 8  |-  b  e. 
_V
6261a1i 9 . . . . . . 7  |-  ( W  e.  LMod  ->  b  e. 
_V )
63 ovexg 5911 . . . . . . 7  |-  ( ( ( x ( .s
`  W ) a )  e.  _V  /\  ( +g  `  W )  e.  _V  /\  b  e.  _V )  ->  (
( x ( .s
`  W ) a ) ( +g  `  W
) b )  e. 
_V )
6458, 60, 62, 63syl3anc 1238 . . . . . 6  |-  ( W  e.  LMod  ->  ( ( x ( .s `  W ) a ) ( +g  `  W
) b )  e. 
_V )
65 elintg 3854 . . . . . 6  |-  ( ( ( x ( .s
`  W ) a ) ( +g  `  W
) b )  e. 
_V  ->  ( ( ( x ( .s `  W ) a ) ( +g  `  W
) b )  e. 
|^| A  <->  A. y  e.  A  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  e.  y ) )
6664, 65syl 14 . . . . 5  |-  ( W  e.  LMod  ->  ( ( ( x ( .s
`  W ) a ) ( +g  `  W
) b )  e. 
|^| A  <->  A. y  e.  A  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  e.  y ) )
67663ad2ant1 1018 . . . 4  |-  ( ( W  e.  LMod  /\  A  C_  S  /\  E. w  w  e.  A )  ->  ( ( ( x ( .s `  W
) a ) ( +g  `  W ) b )  e.  |^| A 
<-> 
A. y  e.  A  ( ( x ( .s `  W ) a ) ( +g  `  W ) b )  e.  y ) )
6867adantr 276 . . 3  |-  ( ( ( W  e.  LMod  /\  A  C_  S  /\  E. w  w  e.  A
)  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  |^| A  /\  b  e.  |^| A ) )  ->  ( (
( x ( .s
`  W ) a ) ( +g  `  W
) b )  e. 
|^| A  <->  A. y  e.  A  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  e.  y ) )
6950, 68mpbird 167 . 2  |-  ( ( ( W  e.  LMod  /\  A  C_  S  /\  E. w  w  e.  A
)  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  |^| A  /\  b  e.  |^| A ) )  ->  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  e. 
|^| A )
70 simp1 997 . 2  |-  ( ( W  e.  LMod  /\  A  C_  S  /\  E. w  w  e.  A )  ->  W  e.  LMod )
711, 2, 3, 4, 5, 7, 19, 33, 69, 70islssmd 13451 1  |-  ( ( W  e.  LMod  /\  A  C_  S  /\  E. w  w  e.  A )  ->  |^| A  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353   E.wex 1492    e. wcel 2148   A.wral 2455   _Vcvv 2739    C_ wss 3131   ~Pcpw 3577   U.cuni 3811   |^|cint 3846   ` cfv 5218  (class class class)co 5877   Basecbs 12464   +g cplusg 12538  Scalarcsca 12541   .scvsca 12542   0gc0g 12710   LModclmod 13382   LSubSpclss 13447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-plusg 12551  df-mulr 12552  df-sca 12554  df-vsca 12555  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-minusg 12886  df-sbg 12887  df-mgp 13136  df-ur 13148  df-ring 13186  df-lmod 13384  df-lssm 13448
This theorem is referenced by:  lssincl  13477  lspf  13481
  Copyright terms: Public domain W3C validator