| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lssintclm | Unicode version | ||
| Description: The intersection of an inhabited set of subspaces is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lssintcl.s |
|
| Ref | Expression |
|---|---|
| lssintclm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2197 |
. 2
| |
| 2 | eqidd 2197 |
. 2
| |
| 3 | eqidd 2197 |
. 2
| |
| 4 | eqidd 2197 |
. 2
| |
| 5 | eqidd 2197 |
. 2
| |
| 6 | lssintcl.s |
. . 3
| |
| 7 | 6 | a1i 9 |
. 2
|
| 8 | intssuni2m 3899 |
. . . 4
| |
| 9 | 8 | 3adant1 1017 |
. . 3
|
| 10 | eqid 2196 |
. . . . . . . . 9
| |
| 11 | 10, 6 | lssssg 13992 |
. . . . . . . 8
|
| 12 | velpw 3613 |
. . . . . . . 8
| |
| 13 | 11, 12 | sylibr 134 |
. . . . . . 7
|
| 14 | 13 | ex 115 |
. . . . . 6
|
| 15 | 14 | ssrdv 3190 |
. . . . 5
|
| 16 | sspwuni 4002 |
. . . . 5
| |
| 17 | 15, 16 | sylib 122 |
. . . 4
|
| 18 | 17 | 3ad2ant1 1020 |
. . 3
|
| 19 | 9, 18 | sstrd 3194 |
. 2
|
| 20 | simpl1 1002 |
. . . . . 6
| |
| 21 | simp2 1000 |
. . . . . . 7
| |
| 22 | 21 | sselda 3184 |
. . . . . 6
|
| 23 | eqid 2196 |
. . . . . . 7
| |
| 24 | 23, 6 | lss0cl 14001 |
. . . . . 6
|
| 25 | 20, 22, 24 | syl2anc 411 |
. . . . 5
|
| 26 | 25 | ralrimiva 2570 |
. . . 4
|
| 27 | 10, 23 | lmod0vcl 13949 |
. . . . . 6
|
| 28 | elintg 3883 |
. . . . . 6
| |
| 29 | 27, 28 | syl 14 |
. . . . 5
|
| 30 | 29 | 3ad2ant1 1020 |
. . . 4
|
| 31 | 26, 30 | mpbird 167 |
. . 3
|
| 32 | elex2 2779 |
. . 3
| |
| 33 | 31, 32 | syl 14 |
. 2
|
| 34 | 20 | adantlr 477 |
. . . . 5
|
| 35 | 22 | adantlr 477 |
. . . . 5
|
| 36 | simplr1 1041 |
. . . . 5
| |
| 37 | simplr2 1042 |
. . . . . 6
| |
| 38 | simpr 110 |
. . . . . 6
| |
| 39 | elinti 3884 |
. . . . . 6
| |
| 40 | 37, 38, 39 | sylc 62 |
. . . . 5
|
| 41 | simplr3 1043 |
. . . . . 6
| |
| 42 | elinti 3884 |
. . . . . 6
| |
| 43 | 41, 38, 42 | sylc 62 |
. . . . 5
|
| 44 | eqid 2196 |
. . . . . 6
| |
| 45 | eqid 2196 |
. . . . . 6
| |
| 46 | eqid 2196 |
. . . . . 6
| |
| 47 | eqid 2196 |
. . . . . 6
| |
| 48 | 44, 45, 46, 47, 6 | lssclg 13996 |
. . . . 5
|
| 49 | 34, 35, 36, 40, 43, 48 | syl113anc 1261 |
. . . 4
|
| 50 | 49 | ralrimiva 2570 |
. . 3
|
| 51 | vex 2766 |
. . . . . . . . 9
| |
| 52 | 51 | a1i 9 |
. . . . . . . 8
|
| 53 | vscaslid 12865 |
. . . . . . . . 9
| |
| 54 | 53 | slotex 12730 |
. . . . . . . 8
|
| 55 | vex 2766 |
. . . . . . . . 9
| |
| 56 | 55 | a1i 9 |
. . . . . . . 8
|
| 57 | ovexg 5959 |
. . . . . . . 8
| |
| 58 | 52, 54, 56, 57 | syl3anc 1249 |
. . . . . . 7
|
| 59 | plusgslid 12815 |
. . . . . . . 8
| |
| 60 | 59 | slotex 12730 |
. . . . . . 7
|
| 61 | vex 2766 |
. . . . . . . 8
| |
| 62 | 61 | a1i 9 |
. . . . . . 7
|
| 63 | ovexg 5959 |
. . . . . . 7
| |
| 64 | 58, 60, 62, 63 | syl3anc 1249 |
. . . . . 6
|
| 65 | elintg 3883 |
. . . . . 6
| |
| 66 | 64, 65 | syl 14 |
. . . . 5
|
| 67 | 66 | 3ad2ant1 1020 |
. . . 4
|
| 68 | 67 | adantr 276 |
. . 3
|
| 69 | 50, 68 | mpbird 167 |
. 2
|
| 70 | simp1 999 |
. 2
| |
| 71 | 1, 2, 3, 4, 5, 7, 19, 33, 69, 70 | islssmd 13991 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-plusg 12793 df-mulr 12794 df-sca 12796 df-vsca 12797 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 df-sbg 13207 df-mgp 13553 df-ur 13592 df-ring 13630 df-lmod 13921 df-lssm 13985 |
| This theorem is referenced by: lssincl 14017 lspf 14021 |
| Copyright terms: Public domain | W3C validator |