ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grprcan Unicode version

Theorem grprcan 12744
Description: Right cancellation law for groups. (Contributed by NM, 24-Aug-2011.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grprcan.b  |-  B  =  ( Base `  G
)
grprcan.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
grprcan  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  Z
)  =  ( Y 
.+  Z )  <->  X  =  Y ) )

Proof of Theorem grprcan
Dummy variables  v  u  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grprcan.b . . . . 5  |-  B  =  ( Base `  G
)
2 grprcan.p . . . . 5  |-  .+  =  ( +g  `  G )
3 eqid 2171 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
41, 2, 3grpinvex 12722 . . . 4  |-  ( ( G  e.  Grp  /\  Z  e.  B )  ->  E. y  e.  B  ( y  .+  Z
)  =  ( 0g
`  G ) )
543ad2antr3 1160 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  E. y  e.  B  ( y  .+  Z )  =  ( 0g `  G ) )
6 simprr 528 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  ( X  .+  Z )  =  ( Y  .+  Z
) )
76oveq1d 5872 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  (
( X  .+  Z
)  .+  y )  =  ( ( Y 
.+  Z )  .+  y ) )
8 simpll 525 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  G  e.  Grp )
91, 2grpass 12721 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B
) )  ->  (
( u  .+  v
)  .+  w )  =  ( u  .+  ( v  .+  w
) ) )
108, 9sylan 281 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  /\  ( ( y  e.  B  /\  ( y 
.+  Z )  =  ( 0g `  G
) )  /\  ( X  .+  Z )  =  ( Y  .+  Z
) ) )  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B
) )  ->  (
( u  .+  v
)  .+  w )  =  ( u  .+  ( v  .+  w
) ) )
11 simplr1 1035 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  X  e.  B )
12 simplr3 1037 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  Z  e.  B )
13 simprll 533 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  y  e.  B )
1410, 11, 12, 13caovassd 6016 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  (
( X  .+  Z
)  .+  y )  =  ( X  .+  ( Z  .+  y ) ) )
15 simplr2 1036 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  Y  e.  B )
1610, 15, 12, 13caovassd 6016 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  (
( Y  .+  Z
)  .+  y )  =  ( Y  .+  ( Z  .+  y ) ) )
177, 14, 163eqtr3d 2212 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  ( X  .+  ( Z  .+  y ) )  =  ( Y  .+  ( Z  .+  y ) ) )
181, 2grpcl 12720 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  u  e.  B  /\  v  e.  B )  ->  ( u  .+  v
)  e.  B )
198, 18syl3an1 1267 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  /\  ( ( y  e.  B  /\  ( y 
.+  Z )  =  ( 0g `  G
) )  /\  ( X  .+  Z )  =  ( Y  .+  Z
) ) )  /\  u  e.  B  /\  v  e.  B )  ->  ( u  .+  v
)  e.  B )
201, 3grpidcl 12738 . . . . . . . . . 10  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  B )
218, 20syl 14 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  ( 0g `  G )  e.  B )
221, 2, 3grplid 12740 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  u  e.  B )  ->  ( ( 0g `  G )  .+  u
)  =  u )
238, 22sylan 281 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  /\  ( ( y  e.  B  /\  ( y 
.+  Z )  =  ( 0g `  G
) )  /\  ( X  .+  Z )  =  ( Y  .+  Z
) ) )  /\  u  e.  B )  ->  ( ( 0g `  G )  .+  u
)  =  u )
241, 2, 3grpinvex 12722 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  u  e.  B )  ->  E. v  e.  B  ( v  .+  u
)  =  ( 0g
`  G ) )
258, 24sylan 281 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  /\  ( ( y  e.  B  /\  ( y 
.+  Z )  =  ( 0g `  G
) )  /\  ( X  .+  Z )  =  ( Y  .+  Z
) ) )  /\  u  e.  B )  ->  E. v  e.  B  ( v  .+  u
)  =  ( 0g
`  G ) )
26 simpr 109 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  /\  ( ( y  e.  B  /\  ( y 
.+  Z )  =  ( 0g `  G
) )  /\  ( X  .+  Z )  =  ( Y  .+  Z
) ) )  /\  Z  e.  B )  ->  Z  e.  B )
2713adantr 274 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  /\  ( ( y  e.  B  /\  ( y 
.+  Z )  =  ( 0g `  G
) )  /\  ( X  .+  Z )  =  ( Y  .+  Z
) ) )  /\  Z  e.  B )  ->  y  e.  B )
28 simprlr 534 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  (
y  .+  Z )  =  ( 0g `  G ) )
2928adantr 274 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  /\  ( ( y  e.  B  /\  ( y 
.+  Z )  =  ( 0g `  G
) )  /\  ( X  .+  Z )  =  ( Y  .+  Z
) ) )  /\  Z  e.  B )  ->  ( y  .+  Z
)  =  ( 0g
`  G ) )
3019, 21, 23, 10, 25, 26, 27, 29grprinvd 12644 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  /\  ( ( y  e.  B  /\  ( y 
.+  Z )  =  ( 0g `  G
) )  /\  ( X  .+  Z )  =  ( Y  .+  Z
) ) )  /\  Z  e.  B )  ->  ( Z  .+  y
)  =  ( 0g
`  G ) )
3112, 30mpdan 419 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  ( Z  .+  y )  =  ( 0g `  G
) )
3231oveq2d 5873 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  ( X  .+  ( Z  .+  y ) )  =  ( X  .+  ( 0g `  G ) ) )
3331oveq2d 5873 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  ( Y  .+  ( Z  .+  y ) )  =  ( Y  .+  ( 0g `  G ) ) )
3417, 32, 333eqtr3d 2212 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  ( X  .+  ( 0g `  G ) )  =  ( Y  .+  ( 0g `  G ) ) )
351, 2, 3grprid 12741 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  ( 0g `  G ) )  =  X )
368, 11, 35syl2anc 409 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  ( X  .+  ( 0g `  G ) )  =  X )
371, 2, 3grprid 12741 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( Y  .+  ( 0g `  G ) )  =  Y )
388, 15, 37syl2anc 409 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  ( Y  .+  ( 0g `  G ) )  =  Y )
3934, 36, 383eqtr3d 2212 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  X  =  Y )
4039expr 373 . . 3  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) ) )  ->  ( ( X  .+  Z )  =  ( Y  .+  Z
)  ->  X  =  Y ) )
415, 40rexlimddv 2593 . 2  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  Z
)  =  ( Y 
.+  Z )  ->  X  =  Y )
)
42 oveq1 5864 . 2  |-  ( X  =  Y  ->  ( X  .+  Z )  =  ( Y  .+  Z
) )
4341, 42impbid1 141 1  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  Z
)  =  ( Y 
.+  Z )  <->  X  =  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 974    = wceq 1349    e. wcel 2142   E.wrex 2450   ` cfv 5200  (class class class)co 5857   Basecbs 12420   +g cplusg 12484   0gc0g 12600   Grpcgrp 12712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-13 2144  ax-14 2145  ax-ext 2153  ax-sep 4108  ax-pow 4161  ax-pr 4195  ax-un 4419  ax-cnex 7869  ax-resscn 7870  ax-1re 7872  ax-addrcl 7875
This theorem depends on definitions:  df-bi 116  df-3an 976  df-tru 1352  df-nf 1455  df-sb 1757  df-eu 2023  df-mo 2024  df-clab 2158  df-cleq 2164  df-clel 2167  df-nfc 2302  df-ral 2454  df-rex 2455  df-reu 2456  df-rmo 2457  df-rab 2458  df-v 2733  df-sbc 2957  df-csb 3051  df-un 3126  df-in 3128  df-ss 3135  df-pw 3569  df-sn 3590  df-pr 3591  df-op 3593  df-uni 3798  df-int 3833  df-br 3991  df-opab 4052  df-mpt 4053  df-id 4279  df-xp 4618  df-rel 4619  df-cnv 4620  df-co 4621  df-dm 4622  df-rn 4623  df-res 4624  df-iota 5162  df-fun 5202  df-fn 5203  df-fv 5208  df-riota 5813  df-ov 5860  df-inn 8883  df-2 8941  df-ndx 12423  df-slot 12424  df-base 12426  df-plusg 12497  df-0g 12602  df-mgm 12614  df-sgrp 12647  df-mnd 12657  df-grp 12715
This theorem is referenced by:  grpinveu  12745  grpid  12746  grpidlcan  12769  grpinvssd  12780  grpsubrcan  12784  grpsubadd  12791
  Copyright terms: Public domain W3C validator