Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grprcan | Unicode version |
Description: Right cancellation law for groups. (Contributed by NM, 24-Aug-2011.) (Proof shortened by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grprcan.b | |
grprcan.p |
Ref | Expression |
---|---|
grprcan |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grprcan.b | . . . . 5 | |
2 | grprcan.p | . . . . 5 | |
3 | eqid 2171 | . . . . 5 | |
4 | 1, 2, 3 | grpinvex 12722 | . . . 4 |
5 | 4 | 3ad2antr3 1160 | . . 3 |
6 | simprr 528 | . . . . . . . 8 | |
7 | 6 | oveq1d 5872 | . . . . . . 7 |
8 | simpll 525 | . . . . . . . . 9 | |
9 | 1, 2 | grpass 12721 | . . . . . . . . 9 |
10 | 8, 9 | sylan 281 | . . . . . . . 8 |
11 | simplr1 1035 | . . . . . . . 8 | |
12 | simplr3 1037 | . . . . . . . 8 | |
13 | simprll 533 | . . . . . . . 8 | |
14 | 10, 11, 12, 13 | caovassd 6016 | . . . . . . 7 |
15 | simplr2 1036 | . . . . . . . 8 | |
16 | 10, 15, 12, 13 | caovassd 6016 | . . . . . . 7 |
17 | 7, 14, 16 | 3eqtr3d 2212 | . . . . . 6 |
18 | 1, 2 | grpcl 12720 | . . . . . . . . . 10 |
19 | 8, 18 | syl3an1 1267 | . . . . . . . . 9 |
20 | 1, 3 | grpidcl 12738 | . . . . . . . . . 10 |
21 | 8, 20 | syl 14 | . . . . . . . . 9 |
22 | 1, 2, 3 | grplid 12740 | . . . . . . . . . 10 |
23 | 8, 22 | sylan 281 | . . . . . . . . 9 |
24 | 1, 2, 3 | grpinvex 12722 | . . . . . . . . . 10 |
25 | 8, 24 | sylan 281 | . . . . . . . . 9 |
26 | simpr 109 | . . . . . . . . 9 | |
27 | 13 | adantr 274 | . . . . . . . . 9 |
28 | simprlr 534 | . . . . . . . . . 10 | |
29 | 28 | adantr 274 | . . . . . . . . 9 |
30 | 19, 21, 23, 10, 25, 26, 27, 29 | grprinvd 12644 | . . . . . . . 8 |
31 | 12, 30 | mpdan 419 | . . . . . . 7 |
32 | 31 | oveq2d 5873 | . . . . . 6 |
33 | 31 | oveq2d 5873 | . . . . . 6 |
34 | 17, 32, 33 | 3eqtr3d 2212 | . . . . 5 |
35 | 1, 2, 3 | grprid 12741 | . . . . . 6 |
36 | 8, 11, 35 | syl2anc 409 | . . . . 5 |
37 | 1, 2, 3 | grprid 12741 | . . . . . 6 |
38 | 8, 15, 37 | syl2anc 409 | . . . . 5 |
39 | 34, 36, 38 | 3eqtr3d 2212 | . . . 4 |
40 | 39 | expr 373 | . . 3 |
41 | 5, 40 | rexlimddv 2593 | . 2 |
42 | oveq1 5864 | . 2 | |
43 | 41, 42 | impbid1 141 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 974 wceq 1349 wcel 2142 wrex 2450 cfv 5200 (class class class)co 5857 cbs 12420 cplusg 12484 c0g 12600 cgrp 12712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-13 2144 ax-14 2145 ax-ext 2153 ax-sep 4108 ax-pow 4161 ax-pr 4195 ax-un 4419 ax-cnex 7869 ax-resscn 7870 ax-1re 7872 ax-addrcl 7875 |
This theorem depends on definitions: df-bi 116 df-3an 976 df-tru 1352 df-nf 1455 df-sb 1757 df-eu 2023 df-mo 2024 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ral 2454 df-rex 2455 df-reu 2456 df-rmo 2457 df-rab 2458 df-v 2733 df-sbc 2957 df-csb 3051 df-un 3126 df-in 3128 df-ss 3135 df-pw 3569 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-int 3833 df-br 3991 df-opab 4052 df-mpt 4053 df-id 4279 df-xp 4618 df-rel 4619 df-cnv 4620 df-co 4621 df-dm 4622 df-rn 4623 df-res 4624 df-iota 5162 df-fun 5202 df-fn 5203 df-fv 5208 df-riota 5813 df-ov 5860 df-inn 8883 df-2 8941 df-ndx 12423 df-slot 12424 df-base 12426 df-plusg 12497 df-0g 12602 df-mgm 12614 df-sgrp 12647 df-mnd 12657 df-grp 12715 |
This theorem is referenced by: grpinveu 12745 grpid 12746 grpidlcan 12769 grpinvssd 12780 grpsubrcan 12784 grpsubadd 12791 |
Copyright terms: Public domain | W3C validator |