| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grprcan | Unicode version | ||
| Description: Right cancellation law for groups. (Contributed by NM, 24-Aug-2011.) (Proof shortened by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grprcan.b |
|
| grprcan.p |
|
| Ref | Expression |
|---|---|
| grprcan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grprcan.b |
. . . . 5
| |
| 2 | grprcan.p |
. . . . 5
| |
| 3 | eqid 2204 |
. . . . 5
| |
| 4 | 1, 2, 3 | grpinvex 13284 |
. . . 4
|
| 5 | 4 | 3ad2antr3 1166 |
. . 3
|
| 6 | simprr 531 |
. . . . . . . 8
| |
| 7 | 6 | oveq1d 5958 |
. . . . . . 7
|
| 8 | simpll 527 |
. . . . . . . . 9
| |
| 9 | 1, 2 | grpass 13283 |
. . . . . . . . 9
|
| 10 | 8, 9 | sylan 283 |
. . . . . . . 8
|
| 11 | simplr1 1041 |
. . . . . . . 8
| |
| 12 | simplr3 1043 |
. . . . . . . 8
| |
| 13 | simprll 537 |
. . . . . . . 8
| |
| 14 | 10, 11, 12, 13 | caovassd 6105 |
. . . . . . 7
|
| 15 | simplr2 1042 |
. . . . . . . 8
| |
| 16 | 10, 15, 12, 13 | caovassd 6105 |
. . . . . . 7
|
| 17 | 7, 14, 16 | 3eqtr3d 2245 |
. . . . . 6
|
| 18 | 1, 2 | grpcl 13282 |
. . . . . . . . . 10
|
| 19 | 8, 18 | syl3an1 1282 |
. . . . . . . . 9
|
| 20 | 1, 3 | grpidcl 13303 |
. . . . . . . . . 10
|
| 21 | 8, 20 | syl 14 |
. . . . . . . . 9
|
| 22 | 1, 2, 3 | grplid 13305 |
. . . . . . . . . 10
|
| 23 | 8, 22 | sylan 283 |
. . . . . . . . 9
|
| 24 | 1, 2, 3 | grpinvex 13284 |
. . . . . . . . . 10
|
| 25 | 8, 24 | sylan 283 |
. . . . . . . . 9
|
| 26 | simpr 110 |
. . . . . . . . 9
| |
| 27 | 13 | adantr 276 |
. . . . . . . . 9
|
| 28 | simprlr 538 |
. . . . . . . . . 10
| |
| 29 | 28 | adantr 276 |
. . . . . . . . 9
|
| 30 | 19, 21, 23, 10, 25, 26, 27, 29 | grpinva 13160 |
. . . . . . . 8
|
| 31 | 12, 30 | mpdan 421 |
. . . . . . 7
|
| 32 | 31 | oveq2d 5959 |
. . . . . 6
|
| 33 | 31 | oveq2d 5959 |
. . . . . 6
|
| 34 | 17, 32, 33 | 3eqtr3d 2245 |
. . . . 5
|
| 35 | 1, 2, 3 | grprid 13306 |
. . . . . 6
|
| 36 | 8, 11, 35 | syl2anc 411 |
. . . . 5
|
| 37 | 1, 2, 3 | grprid 13306 |
. . . . . 6
|
| 38 | 8, 15, 37 | syl2anc 411 |
. . . . 5
|
| 39 | 34, 36, 38 | 3eqtr3d 2245 |
. . . 4
|
| 40 | 39 | expr 375 |
. . 3
|
| 41 | 5, 40 | rexlimddv 2627 |
. 2
|
| 42 | oveq1 5950 |
. 2
| |
| 43 | 41, 42 | impbid1 142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-riota 5898 df-ov 5946 df-inn 9036 df-2 9094 df-ndx 12777 df-slot 12778 df-base 12780 df-plusg 12864 df-0g 13032 df-mgm 13130 df-sgrp 13176 df-mnd 13191 df-grp 13277 |
| This theorem is referenced by: grpinveu 13312 grpid 13313 grpidlcan 13340 grpinvssd 13351 grpsubrcan 13355 grpsubadd 13362 rngrz 13650 ringcom 13735 ringrz 13748 rhmunitinv 13882 lmodcom 14037 |
| Copyright terms: Public domain | W3C validator |