| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grprcan | Unicode version | ||
| Description: Right cancellation law for groups. (Contributed by NM, 24-Aug-2011.) (Proof shortened by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grprcan.b |
|
| grprcan.p |
|
| Ref | Expression |
|---|---|
| grprcan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grprcan.b |
. . . . 5
| |
| 2 | grprcan.p |
. . . . 5
| |
| 3 | eqid 2206 |
. . . . 5
| |
| 4 | 1, 2, 3 | grpinvex 13417 |
. . . 4
|
| 5 | 4 | 3ad2antr3 1167 |
. . 3
|
| 6 | simprr 531 |
. . . . . . . 8
| |
| 7 | 6 | oveq1d 5972 |
. . . . . . 7
|
| 8 | simpll 527 |
. . . . . . . . 9
| |
| 9 | 1, 2 | grpass 13416 |
. . . . . . . . 9
|
| 10 | 8, 9 | sylan 283 |
. . . . . . . 8
|
| 11 | simplr1 1042 |
. . . . . . . 8
| |
| 12 | simplr3 1044 |
. . . . . . . 8
| |
| 13 | simprll 537 |
. . . . . . . 8
| |
| 14 | 10, 11, 12, 13 | caovassd 6119 |
. . . . . . 7
|
| 15 | simplr2 1043 |
. . . . . . . 8
| |
| 16 | 10, 15, 12, 13 | caovassd 6119 |
. . . . . . 7
|
| 17 | 7, 14, 16 | 3eqtr3d 2247 |
. . . . . 6
|
| 18 | 1, 2 | grpcl 13415 |
. . . . . . . . . 10
|
| 19 | 8, 18 | syl3an1 1283 |
. . . . . . . . 9
|
| 20 | 1, 3 | grpidcl 13436 |
. . . . . . . . . 10
|
| 21 | 8, 20 | syl 14 |
. . . . . . . . 9
|
| 22 | 1, 2, 3 | grplid 13438 |
. . . . . . . . . 10
|
| 23 | 8, 22 | sylan 283 |
. . . . . . . . 9
|
| 24 | 1, 2, 3 | grpinvex 13417 |
. . . . . . . . . 10
|
| 25 | 8, 24 | sylan 283 |
. . . . . . . . 9
|
| 26 | simpr 110 |
. . . . . . . . 9
| |
| 27 | 13 | adantr 276 |
. . . . . . . . 9
|
| 28 | simprlr 538 |
. . . . . . . . . 10
| |
| 29 | 28 | adantr 276 |
. . . . . . . . 9
|
| 30 | 19, 21, 23, 10, 25, 26, 27, 29 | grpinva 13293 |
. . . . . . . 8
|
| 31 | 12, 30 | mpdan 421 |
. . . . . . 7
|
| 32 | 31 | oveq2d 5973 |
. . . . . 6
|
| 33 | 31 | oveq2d 5973 |
. . . . . 6
|
| 34 | 17, 32, 33 | 3eqtr3d 2247 |
. . . . 5
|
| 35 | 1, 2, 3 | grprid 13439 |
. . . . . 6
|
| 36 | 8, 11, 35 | syl2anc 411 |
. . . . 5
|
| 37 | 1, 2, 3 | grprid 13439 |
. . . . . 6
|
| 38 | 8, 15, 37 | syl2anc 411 |
. . . . 5
|
| 39 | 34, 36, 38 | 3eqtr3d 2247 |
. . . 4
|
| 40 | 39 | expr 375 |
. . 3
|
| 41 | 5, 40 | rexlimddv 2629 |
. 2
|
| 42 | oveq1 5964 |
. 2
| |
| 43 | 41, 42 | impbid1 142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 df-riota 5912 df-ov 5960 df-inn 9057 df-2 9115 df-ndx 12910 df-slot 12911 df-base 12913 df-plusg 12997 df-0g 13165 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-grp 13410 |
| This theorem is referenced by: grpinveu 13445 grpid 13446 grpidlcan 13473 grpinvssd 13484 grpsubrcan 13488 grpsubadd 13495 rngrz 13783 ringcom 13868 ringrz 13881 rhmunitinv 14015 lmodcom 14170 |
| Copyright terms: Public domain | W3C validator |