| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grprcan | Unicode version | ||
| Description: Right cancellation law for groups. (Contributed by NM, 24-Aug-2011.) (Proof shortened by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grprcan.b |
|
| grprcan.p |
|
| Ref | Expression |
|---|---|
| grprcan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grprcan.b |
. . . . 5
| |
| 2 | grprcan.p |
. . . . 5
| |
| 3 | eqid 2196 |
. . . . 5
| |
| 4 | 1, 2, 3 | grpinvex 13212 |
. . . 4
|
| 5 | 4 | 3ad2antr3 1166 |
. . 3
|
| 6 | simprr 531 |
. . . . . . . 8
| |
| 7 | 6 | oveq1d 5940 |
. . . . . . 7
|
| 8 | simpll 527 |
. . . . . . . . 9
| |
| 9 | 1, 2 | grpass 13211 |
. . . . . . . . 9
|
| 10 | 8, 9 | sylan 283 |
. . . . . . . 8
|
| 11 | simplr1 1041 |
. . . . . . . 8
| |
| 12 | simplr3 1043 |
. . . . . . . 8
| |
| 13 | simprll 537 |
. . . . . . . 8
| |
| 14 | 10, 11, 12, 13 | caovassd 6087 |
. . . . . . 7
|
| 15 | simplr2 1042 |
. . . . . . . 8
| |
| 16 | 10, 15, 12, 13 | caovassd 6087 |
. . . . . . 7
|
| 17 | 7, 14, 16 | 3eqtr3d 2237 |
. . . . . 6
|
| 18 | 1, 2 | grpcl 13210 |
. . . . . . . . . 10
|
| 19 | 8, 18 | syl3an1 1282 |
. . . . . . . . 9
|
| 20 | 1, 3 | grpidcl 13231 |
. . . . . . . . . 10
|
| 21 | 8, 20 | syl 14 |
. . . . . . . . 9
|
| 22 | 1, 2, 3 | grplid 13233 |
. . . . . . . . . 10
|
| 23 | 8, 22 | sylan 283 |
. . . . . . . . 9
|
| 24 | 1, 2, 3 | grpinvex 13212 |
. . . . . . . . . 10
|
| 25 | 8, 24 | sylan 283 |
. . . . . . . . 9
|
| 26 | simpr 110 |
. . . . . . . . 9
| |
| 27 | 13 | adantr 276 |
. . . . . . . . 9
|
| 28 | simprlr 538 |
. . . . . . . . . 10
| |
| 29 | 28 | adantr 276 |
. . . . . . . . 9
|
| 30 | 19, 21, 23, 10, 25, 26, 27, 29 | grpinva 13088 |
. . . . . . . 8
|
| 31 | 12, 30 | mpdan 421 |
. . . . . . 7
|
| 32 | 31 | oveq2d 5941 |
. . . . . 6
|
| 33 | 31 | oveq2d 5941 |
. . . . . 6
|
| 34 | 17, 32, 33 | 3eqtr3d 2237 |
. . . . 5
|
| 35 | 1, 2, 3 | grprid 13234 |
. . . . . 6
|
| 36 | 8, 11, 35 | syl2anc 411 |
. . . . 5
|
| 37 | 1, 2, 3 | grprid 13234 |
. . . . . 6
|
| 38 | 8, 15, 37 | syl2anc 411 |
. . . . 5
|
| 39 | 34, 36, 38 | 3eqtr3d 2237 |
. . . 4
|
| 40 | 39 | expr 375 |
. . 3
|
| 41 | 5, 40 | rexlimddv 2619 |
. 2
|
| 42 | oveq1 5932 |
. 2
| |
| 43 | 41, 42 | impbid1 142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-riota 5880 df-ov 5928 df-inn 9008 df-2 9066 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 |
| This theorem is referenced by: grpinveu 13240 grpid 13241 grpidlcan 13268 grpinvssd 13279 grpsubrcan 13283 grpsubadd 13290 rngrz 13578 ringcom 13663 ringrz 13676 rhmunitinv 13810 lmodcom 13965 |
| Copyright terms: Public domain | W3C validator |