Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grprcan | Unicode version |
Description: Right cancellation law for groups. (Contributed by NM, 24-Aug-2011.) (Proof shortened by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grprcan.b | |
grprcan.p |
Ref | Expression |
---|---|
grprcan |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grprcan.b | . . . . 5 | |
2 | grprcan.p | . . . . 5 | |
3 | eqid 2175 | . . . . 5 | |
4 | 1, 2, 3 | grpinvex 12749 | . . . 4 |
5 | 4 | 3ad2antr3 1164 | . . 3 |
6 | simprr 531 | . . . . . . . 8 | |
7 | 6 | oveq1d 5880 | . . . . . . 7 |
8 | simpll 527 | . . . . . . . . 9 | |
9 | 1, 2 | grpass 12748 | . . . . . . . . 9 |
10 | 8, 9 | sylan 283 | . . . . . . . 8 |
11 | simplr1 1039 | . . . . . . . 8 | |
12 | simplr3 1041 | . . . . . . . 8 | |
13 | simprll 537 | . . . . . . . 8 | |
14 | 10, 11, 12, 13 | caovassd 6024 | . . . . . . 7 |
15 | simplr2 1040 | . . . . . . . 8 | |
16 | 10, 15, 12, 13 | caovassd 6024 | . . . . . . 7 |
17 | 7, 14, 16 | 3eqtr3d 2216 | . . . . . 6 |
18 | 1, 2 | grpcl 12747 | . . . . . . . . . 10 |
19 | 8, 18 | syl3an1 1271 | . . . . . . . . 9 |
20 | 1, 3 | grpidcl 12766 | . . . . . . . . . 10 |
21 | 8, 20 | syl 14 | . . . . . . . . 9 |
22 | 1, 2, 3 | grplid 12768 | . . . . . . . . . 10 |
23 | 8, 22 | sylan 283 | . . . . . . . . 9 |
24 | 1, 2, 3 | grpinvex 12749 | . . . . . . . . . 10 |
25 | 8, 24 | sylan 283 | . . . . . . . . 9 |
26 | simpr 110 | . . . . . . . . 9 | |
27 | 13 | adantr 276 | . . . . . . . . 9 |
28 | simprlr 538 | . . . . . . . . . 10 | |
29 | 28 | adantr 276 | . . . . . . . . 9 |
30 | 19, 21, 23, 10, 25, 26, 27, 29 | grprinvd 12671 | . . . . . . . 8 |
31 | 12, 30 | mpdan 421 | . . . . . . 7 |
32 | 31 | oveq2d 5881 | . . . . . 6 |
33 | 31 | oveq2d 5881 | . . . . . 6 |
34 | 17, 32, 33 | 3eqtr3d 2216 | . . . . 5 |
35 | 1, 2, 3 | grprid 12769 | . . . . . 6 |
36 | 8, 11, 35 | syl2anc 411 | . . . . 5 |
37 | 1, 2, 3 | grprid 12769 | . . . . . 6 |
38 | 8, 15, 37 | syl2anc 411 | . . . . 5 |
39 | 34, 36, 38 | 3eqtr3d 2216 | . . . 4 |
40 | 39 | expr 375 | . . 3 |
41 | 5, 40 | rexlimddv 2597 | . 2 |
42 | oveq1 5872 | . 2 | |
43 | 41, 42 | impbid1 142 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 w3a 978 wceq 1353 wcel 2146 wrex 2454 cfv 5208 (class class class)co 5865 cbs 12429 cplusg 12493 c0g 12627 cgrp 12739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-riota 5821 df-ov 5868 df-inn 8893 df-2 8951 df-ndx 12432 df-slot 12433 df-base 12435 df-plusg 12506 df-0g 12629 df-mgm 12641 df-sgrp 12674 df-mnd 12684 df-grp 12742 |
This theorem is referenced by: grpinveu 12773 grpid 12774 grpidlcan 12797 grpinvssd 12808 grpsubrcan 12812 grpsubadd 12819 ringcom 13010 ringrz 13019 |
Copyright terms: Public domain | W3C validator |