ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grprcan Unicode version

Theorem grprcan 13004
Description: Right cancellation law for groups. (Contributed by NM, 24-Aug-2011.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grprcan.b  |-  B  =  ( Base `  G
)
grprcan.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
grprcan  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  Z
)  =  ( Y 
.+  Z )  <->  X  =  Y ) )

Proof of Theorem grprcan
Dummy variables  v  u  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grprcan.b . . . . 5  |-  B  =  ( Base `  G
)
2 grprcan.p . . . . 5  |-  .+  =  ( +g  `  G )
3 eqid 2189 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
41, 2, 3grpinvex 12978 . . . 4  |-  ( ( G  e.  Grp  /\  Z  e.  B )  ->  E. y  e.  B  ( y  .+  Z
)  =  ( 0g
`  G ) )
543ad2antr3 1166 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  E. y  e.  B  ( y  .+  Z )  =  ( 0g `  G ) )
6 simprr 531 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  ( X  .+  Z )  =  ( Y  .+  Z
) )
76oveq1d 5915 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  (
( X  .+  Z
)  .+  y )  =  ( ( Y 
.+  Z )  .+  y ) )
8 simpll 527 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  G  e.  Grp )
91, 2grpass 12977 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B
) )  ->  (
( u  .+  v
)  .+  w )  =  ( u  .+  ( v  .+  w
) ) )
108, 9sylan 283 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  /\  ( ( y  e.  B  /\  ( y 
.+  Z )  =  ( 0g `  G
) )  /\  ( X  .+  Z )  =  ( Y  .+  Z
) ) )  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B
) )  ->  (
( u  .+  v
)  .+  w )  =  ( u  .+  ( v  .+  w
) ) )
11 simplr1 1041 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  X  e.  B )
12 simplr3 1043 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  Z  e.  B )
13 simprll 537 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  y  e.  B )
1410, 11, 12, 13caovassd 6060 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  (
( X  .+  Z
)  .+  y )  =  ( X  .+  ( Z  .+  y ) ) )
15 simplr2 1042 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  Y  e.  B )
1610, 15, 12, 13caovassd 6060 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  (
( Y  .+  Z
)  .+  y )  =  ( Y  .+  ( Z  .+  y ) ) )
177, 14, 163eqtr3d 2230 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  ( X  .+  ( Z  .+  y ) )  =  ( Y  .+  ( Z  .+  y ) ) )
181, 2grpcl 12976 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  u  e.  B  /\  v  e.  B )  ->  ( u  .+  v
)  e.  B )
198, 18syl3an1 1282 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  /\  ( ( y  e.  B  /\  ( y 
.+  Z )  =  ( 0g `  G
) )  /\  ( X  .+  Z )  =  ( Y  .+  Z
) ) )  /\  u  e.  B  /\  v  e.  B )  ->  ( u  .+  v
)  e.  B )
201, 3grpidcl 12996 . . . . . . . . . 10  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  B )
218, 20syl 14 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  ( 0g `  G )  e.  B )
221, 2, 3grplid 12998 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  u  e.  B )  ->  ( ( 0g `  G )  .+  u
)  =  u )
238, 22sylan 283 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  /\  ( ( y  e.  B  /\  ( y 
.+  Z )  =  ( 0g `  G
) )  /\  ( X  .+  Z )  =  ( Y  .+  Z
) ) )  /\  u  e.  B )  ->  ( ( 0g `  G )  .+  u
)  =  u )
241, 2, 3grpinvex 12978 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  u  e.  B )  ->  E. v  e.  B  ( v  .+  u
)  =  ( 0g
`  G ) )
258, 24sylan 283 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  /\  ( ( y  e.  B  /\  ( y 
.+  Z )  =  ( 0g `  G
) )  /\  ( X  .+  Z )  =  ( Y  .+  Z
) ) )  /\  u  e.  B )  ->  E. v  e.  B  ( v  .+  u
)  =  ( 0g
`  G ) )
26 simpr 110 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  /\  ( ( y  e.  B  /\  ( y 
.+  Z )  =  ( 0g `  G
) )  /\  ( X  .+  Z )  =  ( Y  .+  Z
) ) )  /\  Z  e.  B )  ->  Z  e.  B )
2713adantr 276 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  /\  ( ( y  e.  B  /\  ( y 
.+  Z )  =  ( 0g `  G
) )  /\  ( X  .+  Z )  =  ( Y  .+  Z
) ) )  /\  Z  e.  B )  ->  y  e.  B )
28 simprlr 538 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  (
y  .+  Z )  =  ( 0g `  G ) )
2928adantr 276 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  /\  ( ( y  e.  B  /\  ( y 
.+  Z )  =  ( 0g `  G
) )  /\  ( X  .+  Z )  =  ( Y  .+  Z
) ) )  /\  Z  e.  B )  ->  ( y  .+  Z
)  =  ( 0g
`  G ) )
3019, 21, 23, 10, 25, 26, 27, 29grpinva 12873 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  /\  ( ( y  e.  B  /\  ( y 
.+  Z )  =  ( 0g `  G
) )  /\  ( X  .+  Z )  =  ( Y  .+  Z
) ) )  /\  Z  e.  B )  ->  ( Z  .+  y
)  =  ( 0g
`  G ) )
3112, 30mpdan 421 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  ( Z  .+  y )  =  ( 0g `  G
) )
3231oveq2d 5916 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  ( X  .+  ( Z  .+  y ) )  =  ( X  .+  ( 0g `  G ) ) )
3331oveq2d 5916 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  ( Y  .+  ( Z  .+  y ) )  =  ( Y  .+  ( 0g `  G ) ) )
3417, 32, 333eqtr3d 2230 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  ( X  .+  ( 0g `  G ) )  =  ( Y  .+  ( 0g `  G ) ) )
351, 2, 3grprid 12999 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  ( 0g `  G ) )  =  X )
368, 11, 35syl2anc 411 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  ( X  .+  ( 0g `  G ) )  =  X )
371, 2, 3grprid 12999 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( Y  .+  ( 0g `  G ) )  =  Y )
388, 15, 37syl2anc 411 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  ( Y  .+  ( 0g `  G ) )  =  Y )
3934, 36, 383eqtr3d 2230 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
( y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) )  /\  ( X  .+  Z )  =  ( Y  .+  Z ) ) )  ->  X  =  Y )
4039expr 375 . . 3  |-  ( ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  (
y  e.  B  /\  ( y  .+  Z
)  =  ( 0g
`  G ) ) )  ->  ( ( X  .+  Z )  =  ( Y  .+  Z
)  ->  X  =  Y ) )
415, 40rexlimddv 2612 . 2  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  Z
)  =  ( Y 
.+  Z )  ->  X  =  Y )
)
42 oveq1 5907 . 2  |-  ( X  =  Y  ->  ( X  .+  Z )  =  ( Y  .+  Z
) )
4341, 42impbid1 142 1  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  Z
)  =  ( Y 
.+  Z )  <->  X  =  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   E.wrex 2469   ` cfv 5238  (class class class)co 5900   Basecbs 12523   +g cplusg 12600   0gc0g 12772   Grpcgrp 12968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-cnex 7937  ax-resscn 7938  ax-1re 7940  ax-addrcl 7943
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-iota 5199  df-fun 5240  df-fn 5241  df-fv 5246  df-riota 5855  df-ov 5903  df-inn 8955  df-2 9013  df-ndx 12526  df-slot 12527  df-base 12529  df-plusg 12613  df-0g 12774  df-mgm 12843  df-sgrp 12888  df-mnd 12901  df-grp 12971
This theorem is referenced by:  grpinveu  13005  grpid  13006  grpidlcan  13033  grpinvssd  13044  grpsubrcan  13048  grpsubadd  13055  rngrz  13325  ringcom  13410  ringrz  13423  rhmunitinv  13553  lmodcom  13674
  Copyright terms: Public domain W3C validator