ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplr2 Unicode version

Theorem simplr2 1064
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simplr2  |-  ( ( ( th  /\  ( ph  /\  ps  /\  ch ) )  /\  ta )  ->  ps )

Proof of Theorem simplr2
StepHypRef Expression
1 simpr2 1028 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )
)  ->  ps )
21adantr 276 1  |-  ( ( ( th  /\  ( ph  /\  ps  /\  ch ) )  /\  ta )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  prarloclemlt  7676  prarloclemlo  7677  seq3f1oleml  10733  ccatswrd  11197  resqrexlemdecn  11518  pcdvdstr  12845  ennnfoneleminc  12977  prdssgrpd  13443  prdsmndd  13476  grprcan  13565  mulgnn0dir  13684  lmodprop2d  14306  lssintclm  14342  psrbaglesuppg  14630  restopnb  14849  cnptopresti  14906  blsscls2  15161
  Copyright terms: Public domain W3C validator