ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplr2 Unicode version

Theorem simplr2 1043
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simplr2  |-  ( ( ( th  /\  ( ph  /\  ps  /\  ch ) )  /\  ta )  ->  ps )

Proof of Theorem simplr2
StepHypRef Expression
1 simpr2 1007 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )
)  ->  ps )
21adantr 276 1  |-  ( ( ( th  /\  ( ph  /\  ps  /\  ch ) )  /\  ta )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  prarloclemlt  7641  prarloclemlo  7642  seq3f1oleml  10698  ccatswrd  11161  resqrexlemdecn  11438  pcdvdstr  12765  ennnfoneleminc  12897  prdssgrpd  13362  prdsmndd  13395  grprcan  13484  mulgnn0dir  13603  lmodprop2d  14225  lssintclm  14261  psrbaglesuppg  14549  restopnb  14768  cnptopresti  14825  blsscls2  15080
  Copyright terms: Public domain W3C validator