ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restopnb Unicode version

Theorem restopnb 12821
Description: If  B is an open subset of the subspace base set  A, then any subset of  B is open iff it is open in  A. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
restopnb  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( C  e.  J  <->  C  e.  ( Jt  A ) ) )

Proof of Theorem restopnb
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 simpr3 995 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  C  C_  B )
2 simpr2 994 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  B  C_  A )
31, 2sstrd 3152 . . . . . 6  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  C  C_  A )
4 df-ss 3129 . . . . . 6  |-  ( C 
C_  A  <->  ( C  i^i  A )  =  C )
53, 4sylib 121 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( C  i^i  A )  =  C )
65eqcomd 2171 . . . 4  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  C  =  ( C  i^i  A ) )
7 ineq1 3316 . . . . . 6  |-  ( v  =  C  ->  (
v  i^i  A )  =  ( C  i^i  A ) )
87rspceeqv 2848 . . . . 5  |-  ( ( C  e.  J  /\  C  =  ( C  i^i  A ) )  ->  E. v  e.  J  C  =  ( v  i^i  A ) )
98expcom 115 . . . 4  |-  ( C  =  ( C  i^i  A )  ->  ( C  e.  J  ->  E. v  e.  J  C  =  ( v  i^i  A
) ) )
106, 9syl 14 . . 3  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( C  e.  J  ->  E. v  e.  J  C  =  ( v  i^i 
A ) ) )
11 inass 3332 . . . . . 6  |-  ( ( v  i^i  A )  i^i  B )  =  ( v  i^i  ( A  i^i  B ) )
12 simprr 522 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  C  =  ( v  i^i 
A ) )
1312ineq1d 3322 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  ( C  i^i  B )  =  ( ( v  i^i 
A )  i^i  B
) )
14 simplr3 1031 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  v  e.  J )  ->  C  C_  B )
15 df-ss 3129 . . . . . . . . 9  |-  ( C 
C_  B  <->  ( C  i^i  B )  =  C )
1614, 15sylib 121 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  v  e.  J )  ->  ( C  i^i  B
)  =  C )
1716adantrr 471 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  ( C  i^i  B )  =  C )
1813, 17eqtr3d 2200 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  (
( v  i^i  A
)  i^i  B )  =  C )
19 simplr2 1030 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  v  e.  J )  ->  B  C_  A )
20 sseqin2 3341 . . . . . . . . 9  |-  ( B 
C_  A  <->  ( A  i^i  B )  =  B )
2119, 20sylib 121 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  v  e.  J )  ->  ( A  i^i  B
)  =  B )
2221ineq2d 3323 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  v  e.  J )  ->  ( v  i^i  ( A  i^i  B ) )  =  ( v  i^i 
B ) )
2322adantrr 471 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  (
v  i^i  ( A  i^i  B ) )  =  ( v  i^i  B
) )
2411, 18, 233eqtr3a 2223 . . . . 5  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  C  =  ( v  i^i 
B ) )
25 simplll 523 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  J  e.  Top )
26 simprl 521 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  v  e.  J )
27 simplr1 1029 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  B  e.  J )
28 inopn 12641 . . . . . 6  |-  ( ( J  e.  Top  /\  v  e.  J  /\  B  e.  J )  ->  ( v  i^i  B
)  e.  J )
2925, 26, 27, 28syl3anc 1228 . . . . 5  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  (
v  i^i  B )  e.  J )
3024, 29eqeltrd 2243 . . . 4  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  C  e.  J )
3130rexlimdvaa 2584 . . 3  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( E. v  e.  J  C  =  ( v  i^i  A )  ->  C  e.  J ) )
3210, 31impbid 128 . 2  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( C  e.  J  <->  E. v  e.  J  C  =  ( v  i^i  A
) ) )
33 elrest 12563 . . 3  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( C  e.  ( Jt  A )  <->  E. v  e.  J  C  =  ( v  i^i  A
) ) )
3433adantr 274 . 2  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( C  e.  ( Jt  A
)  <->  E. v  e.  J  C  =  ( v  i^i  A ) ) )
3532, 34bitr4d 190 1  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( C  e.  J  <->  C  e.  ( Jt  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   E.wrex 2445    i^i cin 3115    C_ wss 3116  (class class class)co 5842   ↾t crest 12556   Topctop 12635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-rest 12558  df-top 12636
This theorem is referenced by:  restopn2  12823
  Copyright terms: Public domain W3C validator