Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > restopnb | Unicode version |
Description: If is an open subset of the subspace base set , then any subset of is open iff it is open in . (Contributed by Mario Carneiro, 2-Mar-2015.) |
Ref | Expression |
---|---|
restopnb | ↾t |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr3 1000 | . . . . . . 7 | |
2 | simpr2 999 | . . . . . . 7 | |
3 | 1, 2 | sstrd 3157 | . . . . . 6 |
4 | df-ss 3134 | . . . . . 6 | |
5 | 3, 4 | sylib 121 | . . . . 5 |
6 | 5 | eqcomd 2176 | . . . 4 |
7 | ineq1 3321 | . . . . . 6 | |
8 | 7 | rspceeqv 2852 | . . . . 5 |
9 | 8 | expcom 115 | . . . 4 |
10 | 6, 9 | syl 14 | . . 3 |
11 | inass 3337 | . . . . . 6 | |
12 | simprr 527 | . . . . . . . 8 | |
13 | 12 | ineq1d 3327 | . . . . . . 7 |
14 | simplr3 1036 | . . . . . . . . 9 | |
15 | df-ss 3134 | . . . . . . . . 9 | |
16 | 14, 15 | sylib 121 | . . . . . . . 8 |
17 | 16 | adantrr 476 | . . . . . . 7 |
18 | 13, 17 | eqtr3d 2205 | . . . . . 6 |
19 | simplr2 1035 | . . . . . . . . 9 | |
20 | sseqin2 3346 | . . . . . . . . 9 | |
21 | 19, 20 | sylib 121 | . . . . . . . 8 |
22 | 21 | ineq2d 3328 | . . . . . . 7 |
23 | 22 | adantrr 476 | . . . . . 6 |
24 | 11, 18, 23 | 3eqtr3a 2227 | . . . . 5 |
25 | simplll 528 | . . . . . 6 | |
26 | simprl 526 | . . . . . 6 | |
27 | simplr1 1034 | . . . . . 6 | |
28 | inopn 12795 | . . . . . 6 | |
29 | 25, 26, 27, 28 | syl3anc 1233 | . . . . 5 |
30 | 24, 29 | eqeltrd 2247 | . . . 4 |
31 | 30 | rexlimdvaa 2588 | . . 3 |
32 | 10, 31 | impbid 128 | . 2 |
33 | elrest 12586 | . . 3 ↾t | |
34 | 33 | adantr 274 | . 2 ↾t |
35 | 32, 34 | bitr4d 190 | 1 ↾t |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wrex 2449 cin 3120 wss 3121 (class class class)co 5853 ↾t crest 12579 ctop 12789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-rest 12581 df-top 12790 |
This theorem is referenced by: restopn2 12977 |
Copyright terms: Public domain | W3C validator |