ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restopnb Unicode version

Theorem restopnb 12132
Description: If  B is an open subset of the subspace base set  A, then any subset of  B is open iff it is open in  A. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
restopnb  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( C  e.  J  <->  C  e.  ( Jt  A ) ) )

Proof of Theorem restopnb
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 simpr3 957 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  C  C_  B )
2 simpr2 956 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  B  C_  A )
31, 2sstrd 3057 . . . . . 6  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  C  C_  A )
4 df-ss 3034 . . . . . 6  |-  ( C 
C_  A  <->  ( C  i^i  A )  =  C )
53, 4sylib 121 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( C  i^i  A )  =  C )
65eqcomd 2105 . . . 4  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  C  =  ( C  i^i  A ) )
7 ineq1 3217 . . . . . 6  |-  ( v  =  C  ->  (
v  i^i  A )  =  ( C  i^i  A ) )
87rspceeqv 2761 . . . . 5  |-  ( ( C  e.  J  /\  C  =  ( C  i^i  A ) )  ->  E. v  e.  J  C  =  ( v  i^i  A ) )
98expcom 115 . . . 4  |-  ( C  =  ( C  i^i  A )  ->  ( C  e.  J  ->  E. v  e.  J  C  =  ( v  i^i  A
) ) )
106, 9syl 14 . . 3  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( C  e.  J  ->  E. v  e.  J  C  =  ( v  i^i 
A ) ) )
11 inass 3233 . . . . . 6  |-  ( ( v  i^i  A )  i^i  B )  =  ( v  i^i  ( A  i^i  B ) )
12 simprr 502 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  C  =  ( v  i^i 
A ) )
1312ineq1d 3223 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  ( C  i^i  B )  =  ( ( v  i^i 
A )  i^i  B
) )
14 simplr3 993 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  v  e.  J )  ->  C  C_  B )
15 df-ss 3034 . . . . . . . . 9  |-  ( C 
C_  B  <->  ( C  i^i  B )  =  C )
1614, 15sylib 121 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  v  e.  J )  ->  ( C  i^i  B
)  =  C )
1716adantrr 466 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  ( C  i^i  B )  =  C )
1813, 17eqtr3d 2134 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  (
( v  i^i  A
)  i^i  B )  =  C )
19 simplr2 992 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  v  e.  J )  ->  B  C_  A )
20 sseqin2 3242 . . . . . . . . 9  |-  ( B 
C_  A  <->  ( A  i^i  B )  =  B )
2119, 20sylib 121 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  v  e.  J )  ->  ( A  i^i  B
)  =  B )
2221ineq2d 3224 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  v  e.  J )  ->  ( v  i^i  ( A  i^i  B ) )  =  ( v  i^i 
B ) )
2322adantrr 466 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  (
v  i^i  ( A  i^i  B ) )  =  ( v  i^i  B
) )
2411, 18, 233eqtr3a 2156 . . . . 5  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  C  =  ( v  i^i 
B ) )
25 simplll 503 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  J  e.  Top )
26 simprl 501 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  v  e.  J )
27 simplr1 991 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  B  e.  J )
28 inopn 11952 . . . . . 6  |-  ( ( J  e.  Top  /\  v  e.  J  /\  B  e.  J )  ->  ( v  i^i  B
)  e.  J )
2925, 26, 27, 28syl3anc 1184 . . . . 5  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  (
v  i^i  B )  e.  J )
3024, 29eqeltrd 2176 . . . 4  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  C  e.  J )
3130rexlimdvaa 2509 . . 3  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( E. v  e.  J  C  =  ( v  i^i  A )  ->  C  e.  J ) )
3210, 31impbid 128 . 2  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( C  e.  J  <->  E. v  e.  J  C  =  ( v  i^i  A
) ) )
33 elrest 11909 . . 3  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( C  e.  ( Jt  A )  <->  E. v  e.  J  C  =  ( v  i^i  A
) ) )
3433adantr 272 . 2  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( C  e.  ( Jt  A
)  <->  E. v  e.  J  C  =  ( v  i^i  A ) ) )
3532, 34bitr4d 190 1  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( C  e.  J  <->  C  e.  ( Jt  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 930    = wceq 1299    e. wcel 1448   E.wrex 2376    i^i cin 3020    C_ wss 3021  (class class class)co 5706   ↾t crest 11902   Topctop 11946
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-rest 11904  df-top 11947
This theorem is referenced by:  restopn2  12134
  Copyright terms: Public domain W3C validator