Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > restopnb | Unicode version |
Description: If is an open subset of the subspace base set , then any subset of is open iff it is open in . (Contributed by Mario Carneiro, 2-Mar-2015.) |
Ref | Expression |
---|---|
restopnb | ↾t |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr3 990 | . . . . . . 7 | |
2 | simpr2 989 | . . . . . . 7 | |
3 | 1, 2 | sstrd 3138 | . . . . . 6 |
4 | df-ss 3115 | . . . . . 6 | |
5 | 3, 4 | sylib 121 | . . . . 5 |
6 | 5 | eqcomd 2163 | . . . 4 |
7 | ineq1 3301 | . . . . . 6 | |
8 | 7 | rspceeqv 2834 | . . . . 5 |
9 | 8 | expcom 115 | . . . 4 |
10 | 6, 9 | syl 14 | . . 3 |
11 | inass 3317 | . . . . . 6 | |
12 | simprr 522 | . . . . . . . 8 | |
13 | 12 | ineq1d 3307 | . . . . . . 7 |
14 | simplr3 1026 | . . . . . . . . 9 | |
15 | df-ss 3115 | . . . . . . . . 9 | |
16 | 14, 15 | sylib 121 | . . . . . . . 8 |
17 | 16 | adantrr 471 | . . . . . . 7 |
18 | 13, 17 | eqtr3d 2192 | . . . . . 6 |
19 | simplr2 1025 | . . . . . . . . 9 | |
20 | sseqin2 3326 | . . . . . . . . 9 | |
21 | 19, 20 | sylib 121 | . . . . . . . 8 |
22 | 21 | ineq2d 3308 | . . . . . . 7 |
23 | 22 | adantrr 471 | . . . . . 6 |
24 | 11, 18, 23 | 3eqtr3a 2214 | . . . . 5 |
25 | simplll 523 | . . . . . 6 | |
26 | simprl 521 | . . . . . 6 | |
27 | simplr1 1024 | . . . . . 6 | |
28 | inopn 12361 | . . . . . 6 | |
29 | 25, 26, 27, 28 | syl3anc 1220 | . . . . 5 |
30 | 24, 29 | eqeltrd 2234 | . . . 4 |
31 | 30 | rexlimdvaa 2575 | . . 3 |
32 | 10, 31 | impbid 128 | . 2 |
33 | elrest 12318 | . . 3 ↾t | |
34 | 33 | adantr 274 | . 2 ↾t |
35 | 32, 34 | bitr4d 190 | 1 ↾t |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wceq 1335 wcel 2128 wrex 2436 cin 3101 wss 3102 (class class class)co 5818 ↾t crest 12311 ctop 12355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-rest 12313 df-top 12356 |
This theorem is referenced by: restopn2 12543 |
Copyright terms: Public domain | W3C validator |