ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restopnb Unicode version

Theorem restopnb 12339
Description: If  B is an open subset of the subspace base set  A, then any subset of  B is open iff it is open in  A. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
restopnb  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( C  e.  J  <->  C  e.  ( Jt  A ) ) )

Proof of Theorem restopnb
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 simpr3 989 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  C  C_  B )
2 simpr2 988 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  B  C_  A )
31, 2sstrd 3102 . . . . . 6  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  C  C_  A )
4 df-ss 3079 . . . . . 6  |-  ( C 
C_  A  <->  ( C  i^i  A )  =  C )
53, 4sylib 121 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( C  i^i  A )  =  C )
65eqcomd 2143 . . . 4  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  C  =  ( C  i^i  A ) )
7 ineq1 3265 . . . . . 6  |-  ( v  =  C  ->  (
v  i^i  A )  =  ( C  i^i  A ) )
87rspceeqv 2802 . . . . 5  |-  ( ( C  e.  J  /\  C  =  ( C  i^i  A ) )  ->  E. v  e.  J  C  =  ( v  i^i  A ) )
98expcom 115 . . . 4  |-  ( C  =  ( C  i^i  A )  ->  ( C  e.  J  ->  E. v  e.  J  C  =  ( v  i^i  A
) ) )
106, 9syl 14 . . 3  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( C  e.  J  ->  E. v  e.  J  C  =  ( v  i^i 
A ) ) )
11 inass 3281 . . . . . 6  |-  ( ( v  i^i  A )  i^i  B )  =  ( v  i^i  ( A  i^i  B ) )
12 simprr 521 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  C  =  ( v  i^i 
A ) )
1312ineq1d 3271 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  ( C  i^i  B )  =  ( ( v  i^i 
A )  i^i  B
) )
14 simplr3 1025 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  v  e.  J )  ->  C  C_  B )
15 df-ss 3079 . . . . . . . . 9  |-  ( C 
C_  B  <->  ( C  i^i  B )  =  C )
1614, 15sylib 121 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  v  e.  J )  ->  ( C  i^i  B
)  =  C )
1716adantrr 470 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  ( C  i^i  B )  =  C )
1813, 17eqtr3d 2172 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  (
( v  i^i  A
)  i^i  B )  =  C )
19 simplr2 1024 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  v  e.  J )  ->  B  C_  A )
20 sseqin2 3290 . . . . . . . . 9  |-  ( B 
C_  A  <->  ( A  i^i  B )  =  B )
2119, 20sylib 121 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  v  e.  J )  ->  ( A  i^i  B
)  =  B )
2221ineq2d 3272 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  v  e.  J )  ->  ( v  i^i  ( A  i^i  B ) )  =  ( v  i^i 
B ) )
2322adantrr 470 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  (
v  i^i  ( A  i^i  B ) )  =  ( v  i^i  B
) )
2411, 18, 233eqtr3a 2194 . . . . 5  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  C  =  ( v  i^i 
B ) )
25 simplll 522 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  J  e.  Top )
26 simprl 520 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  v  e.  J )
27 simplr1 1023 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  B  e.  J )
28 inopn 12159 . . . . . 6  |-  ( ( J  e.  Top  /\  v  e.  J  /\  B  e.  J )  ->  ( v  i^i  B
)  e.  J )
2925, 26, 27, 28syl3anc 1216 . . . . 5  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  (
v  i^i  B )  e.  J )
3024, 29eqeltrd 2214 . . . 4  |-  ( ( ( ( J  e. 
Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B ) )  /\  ( v  e.  J  /\  C  =  (
v  i^i  A )
) )  ->  C  e.  J )
3130rexlimdvaa 2548 . . 3  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( E. v  e.  J  C  =  ( v  i^i  A )  ->  C  e.  J ) )
3210, 31impbid 128 . 2  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( C  e.  J  <->  E. v  e.  J  C  =  ( v  i^i  A
) ) )
33 elrest 12116 . . 3  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( C  e.  ( Jt  A )  <->  E. v  e.  J  C  =  ( v  i^i  A
) ) )
3433adantr 274 . 2  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( C  e.  ( Jt  A
)  <->  E. v  e.  J  C  =  ( v  i^i  A ) ) )
3532, 34bitr4d 190 1  |-  ( ( ( J  e.  Top  /\  A  e.  V )  /\  ( B  e.  J  /\  B  C_  A  /\  C  C_  B
) )  ->  ( C  e.  J  <->  C  e.  ( Jt  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   E.wrex 2415    i^i cin 3065    C_ wss 3066  (class class class)co 5767   ↾t crest 12109   Topctop 12153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-rest 12111  df-top 12154
This theorem is referenced by:  restopn2  12341
  Copyright terms: Public domain W3C validator