ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemlt Unicode version

Theorem prarloclemlt 7455
Description: Two possible ways of contracting an interval which straddles a Dedekind cut. Lemma for prarloc 7465. (Contributed by Jim Kingdon, 10-Nov-2019.)
Assertion
Ref Expression
prarloclemlt  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( A  +Q  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P
) )  <Q  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P ) ) )

Proof of Theorem prarloclemlt
StepHypRef Expression
1 2onn 6500 . . . . . . . . . . . 12  |-  2o  e.  om
2 nnacl 6459 . . . . . . . . . . . 12  |-  ( ( y  e.  om  /\  2o  e.  om )  -> 
( y  +o  2o )  e.  om )
31, 2mpan2 423 . . . . . . . . . . 11  |-  ( y  e.  om  ->  (
y  +o  2o )  e.  om )
4 nnaword1 6492 . . . . . . . . . . 11  |-  ( ( ( y  +o  2o )  e.  om  /\  X  e.  om )  ->  (
y  +o  2o ) 
C_  ( ( y  +o  2o )  +o  X ) )
53, 4sylan 281 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  X  e.  om )  ->  ( y  +o  2o )  C_  ( ( y  +o  2o )  +o  X ) )
6 1oex 6403 . . . . . . . . . . . . . 14  |-  1o  e.  _V
76sucid 4402 . . . . . . . . . . . . 13  |-  1o  e.  suc  1o
8 df-2o 6396 . . . . . . . . . . . . 13  |-  2o  =  suc  1o
97, 8eleqtrri 2246 . . . . . . . . . . . 12  |-  1o  e.  2o
10 nnaordi 6487 . . . . . . . . . . . . 13  |-  ( ( 2o  e.  om  /\  y  e.  om )  ->  ( 1o  e.  2o  ->  ( y  +o  1o )  e.  ( y  +o  2o ) ) )
111, 10mpan 422 . . . . . . . . . . . 12  |-  ( y  e.  om  ->  ( 1o  e.  2o  ->  (
y  +o  1o )  e.  ( y  +o  2o ) ) )
129, 11mpi 15 . . . . . . . . . . 11  |-  ( y  e.  om  ->  (
y  +o  1o )  e.  ( y  +o  2o ) )
1312adantr 274 . . . . . . . . . 10  |-  ( ( y  e.  om  /\  X  e.  om )  ->  ( y  +o  1o )  e.  ( y  +o  2o ) )
145, 13sseldd 3148 . . . . . . . . 9  |-  ( ( y  e.  om  /\  X  e.  om )  ->  ( y  +o  1o )  e.  ( (
y  +o  2o )  +o  X ) )
1514ancoms 266 . . . . . . . 8  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( y  +o  1o )  e.  ( (
y  +o  2o )  +o  X ) )
16 1pi 7277 . . . . . . . . . . 11  |-  1o  e.  N.
17 nnppipi 7305 . . . . . . . . . . 11  |-  ( ( y  e.  om  /\  1o  e.  N. )  -> 
( y  +o  1o )  e.  N. )
1816, 17mpan2 423 . . . . . . . . . 10  |-  ( y  e.  om  ->  (
y  +o  1o )  e.  N. )
1918adantl 275 . . . . . . . . 9  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( y  +o  1o )  e.  N. )
20 o1p1e2 6447 . . . . . . . . . . . . . 14  |-  ( 1o 
+o  1o )  =  2o
21 1onn 6499 . . . . . . . . . . . . . . 15  |-  1o  e.  om
22 nnppipi 7305 . . . . . . . . . . . . . . 15  |-  ( ( 1o  e.  om  /\  1o  e.  N. )  -> 
( 1o  +o  1o )  e.  N. )
2321, 16, 22mp2an 424 . . . . . . . . . . . . . 14  |-  ( 1o 
+o  1o )  e. 
N.
2420, 23eqeltrri 2244 . . . . . . . . . . . . 13  |-  2o  e.  N.
25 nnppipi 7305 . . . . . . . . . . . . 13  |-  ( ( y  e.  om  /\  2o  e.  N. )  -> 
( y  +o  2o )  e.  N. )
2624, 25mpan2 423 . . . . . . . . . . . 12  |-  ( y  e.  om  ->  (
y  +o  2o )  e.  N. )
27 pinn 7271 . . . . . . . . . . . 12  |-  ( ( y  +o  2o )  e.  N.  ->  (
y  +o  2o )  e.  om )
2826, 27syl 14 . . . . . . . . . . 11  |-  ( y  e.  om  ->  (
y  +o  2o )  e.  om )
29 nnacom 6463 . . . . . . . . . . 11  |-  ( ( X  e.  om  /\  ( y  +o  2o )  e.  om )  ->  ( X  +o  (
y  +o  2o ) )  =  ( ( y  +o  2o )  +o  X ) )
3028, 29sylan2 284 . . . . . . . . . 10  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( X  +o  (
y  +o  2o ) )  =  ( ( y  +o  2o )  +o  X ) )
31 nnppipi 7305 . . . . . . . . . . 11  |-  ( ( X  e.  om  /\  ( y  +o  2o )  e.  N. )  ->  ( X  +o  (
y  +o  2o ) )  e.  N. )
3226, 31sylan2 284 . . . . . . . . . 10  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( X  +o  (
y  +o  2o ) )  e.  N. )
3330, 32eqeltrrd 2248 . . . . . . . . 9  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( ( y  +o  2o )  +o  X
)  e.  N. )
34 ltpiord 7281 . . . . . . . . 9  |-  ( ( ( y  +o  1o )  e.  N.  /\  (
( y  +o  2o )  +o  X )  e. 
N. )  ->  (
( y  +o  1o )  <N  ( ( y  +o  2o )  +o  X )  <->  ( y  +o  1o )  e.  ( ( y  +o  2o )  +o  X ) ) )
3519, 33, 34syl2anc 409 . . . . . . . 8  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( ( y  +o  1o )  <N  (
( y  +o  2o )  +o  X )  <->  ( y  +o  1o )  e.  ( ( y  +o  2o )  +o  X ) ) )
3615, 35mpbird 166 . . . . . . 7  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( y  +o  1o )  <N  ( ( y  +o  2o )  +o  X ) )
37 mulidpi 7280 . . . . . . . . 9  |-  ( ( y  +o  1o )  e.  N.  ->  (
( y  +o  1o )  .N  1o )  =  ( y  +o  1o ) )
3819, 37syl 14 . . . . . . . 8  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( ( y  +o  1o )  .N  1o )  =  ( y  +o  1o ) )
39 mulcompig 7293 . . . . . . . . . 10  |-  ( ( ( ( y  +o  2o )  +o  X
)  e.  N.  /\  1o  e.  N. )  -> 
( ( ( y  +o  2o )  +o  X )  .N  1o )  =  ( 1o  .N  ( ( y  +o  2o )  +o  X
) ) )
4033, 16, 39sylancl 411 . . . . . . . . 9  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( ( ( y  +o  2o )  +o  X )  .N  1o )  =  ( 1o  .N  ( ( y  +o  2o )  +o  X
) ) )
41 mulidpi 7280 . . . . . . . . . 10  |-  ( ( ( y  +o  2o )  +o  X )  e. 
N.  ->  ( ( ( y  +o  2o )  +o  X )  .N  1o )  =  ( ( y  +o  2o )  +o  X ) )
4233, 41syl 14 . . . . . . . . 9  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( ( ( y  +o  2o )  +o  X )  .N  1o )  =  ( (
y  +o  2o )  +o  X ) )
4340, 42eqtr3d 2205 . . . . . . . 8  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( 1o  .N  (
( y  +o  2o )  +o  X ) )  =  ( ( y  +o  2o )  +o  X ) )
4438, 43breq12d 4002 . . . . . . 7  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( ( ( y  +o  1o )  .N  1o )  <N  ( 1o  .N  ( ( y  +o  2o )  +o  X ) )  <->  ( y  +o  1o )  <N  (
( y  +o  2o )  +o  X ) ) )
4536, 44mpbird 166 . . . . . 6  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( ( y  +o  1o )  .N  1o )  <N  ( 1o  .N  ( ( y  +o  2o )  +o  X
) ) )
46 simpr 109 . . . . . . 7  |-  ( ( X  e.  om  /\  y  e.  om )  ->  y  e.  om )
47 ordpipqqs 7336 . . . . . . . . . 10  |-  ( ( ( ( y  +o  1o )  e.  N.  /\  1o  e.  N. )  /\  ( ( ( y  +o  2o )  +o  X )  e.  N.  /\  1o  e.  N. )
)  ->  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  <Q  [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  <->  ( (
y  +o  1o )  .N  1o )  <N 
( 1o  .N  (
( y  +o  2o )  +o  X ) ) ) )
4816, 47mpanl2 433 . . . . . . . . 9  |-  ( ( ( y  +o  1o )  e.  N.  /\  (
( ( y  +o  2o )  +o  X
)  e.  N.  /\  1o  e.  N. ) )  ->  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  <Q  [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  <->  ( (
y  +o  1o )  .N  1o )  <N 
( 1o  .N  (
( y  +o  2o )  +o  X ) ) ) )
4916, 48mpanr2 436 . . . . . . . 8  |-  ( ( ( y  +o  1o )  e.  N.  /\  (
( y  +o  2o )  +o  X )  e. 
N. )  ->  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  <Q  [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  <->  ( (
y  +o  1o )  .N  1o )  <N 
( 1o  .N  (
( y  +o  2o )  +o  X ) ) ) )
5018, 49sylan 281 . . . . . . 7  |-  ( ( y  e.  om  /\  ( ( y  +o  2o )  +o  X
)  e.  N. )  ->  ( [ <. (
y  +o  1o ) ,  1o >. ]  ~Q  <Q  [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  <->  ( (
y  +o  1o )  .N  1o )  <N 
( 1o  .N  (
( y  +o  2o )  +o  X ) ) ) )
5146, 33, 50syl2anc 409 . . . . . 6  |-  ( ( X  e.  om  /\  y  e.  om )  ->  ( [ <. (
y  +o  1o ) ,  1o >. ]  ~Q  <Q  [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  <->  ( (
y  +o  1o )  .N  1o )  <N 
( 1o  .N  (
( y  +o  2o )  +o  X ) ) ) )
5245, 51mpbird 166 . . . . 5  |-  ( ( X  e.  om  /\  y  e.  om )  ->  [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  <Q  [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  )
5352adantlr 474 . . . 4  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  <Q  [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  )
54 opelxpi 4643 . . . . . . . . 9  |-  ( ( ( y  +o  1o )  e.  N.  /\  1o  e.  N. )  ->  <. (
y  +o  1o ) ,  1o >.  e.  ( N.  X.  N. )
)
5519, 16, 54sylancl 411 . . . . . . . 8  |-  ( ( X  e.  om  /\  y  e.  om )  -> 
<. ( y  +o  1o ) ,  1o >.  e.  ( N.  X.  N. )
)
56 enqex 7322 . . . . . . . . 9  |-  ~Q  e.  _V
5756ecelqsi 6567 . . . . . . . 8  |-  ( <.
( y  +o  1o ) ,  1o >.  e.  ( N.  X.  N. )  ->  [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
5855, 57syl 14 . . . . . . 7  |-  ( ( X  e.  om  /\  y  e.  om )  ->  [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
59 df-nqqs 7310 . . . . . . 7  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
6058, 59eleqtrrdi 2264 . . . . . 6  |-  ( ( X  e.  om  /\  y  e.  om )  ->  [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  e.  Q. )
6160adantlr 474 . . . . 5  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  e.  Q. )
62 opelxpi 4643 . . . . . . . . 9  |-  ( ( ( ( y  +o  2o )  +o  X
)  e.  N.  /\  1o  e.  N. )  ->  <. ( ( y  +o  2o )  +o  X
) ,  1o >.  e.  ( N.  X.  N. ) )
6333, 16, 62sylancl 411 . . . . . . . 8  |-  ( ( X  e.  om  /\  y  e.  om )  -> 
<. ( ( y  +o  2o )  +o  X
) ,  1o >.  e.  ( N.  X.  N. ) )
6456ecelqsi 6567 . . . . . . . 8  |-  ( <.
( ( y  +o  2o )  +o  X
) ,  1o >.  e.  ( N.  X.  N. )  ->  [ <. (
( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
6563, 64syl 14 . . . . . . 7  |-  ( ( X  e.  om  /\  y  e.  om )  ->  [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
6665, 59eleqtrrdi 2264 . . . . . 6  |-  ( ( X  e.  om  /\  y  e.  om )  ->  [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  e.  Q. )
6766adantlr 474 . . . . 5  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  e.  Q. )
68 simplr3 1036 . . . . 5  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  P  e.  Q. )
69 ltmnqg 7363 . . . . 5  |-  ( ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  e.  Q.  /\ 
[ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  e.  Q.  /\  P  e.  Q. )  ->  ( [ <. (
y  +o  1o ) ,  1o >. ]  ~Q  <Q  [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  <->  ( P  .Q  [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  )  <Q 
( P  .Q  [ <. ( ( y  +o  2o )  +o  X
) ,  1o >. ]  ~Q  ) ) )
7061, 67, 68, 69syl3anc 1233 . . . 4  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( [ <. (
y  +o  1o ) ,  1o >. ]  ~Q  <Q  [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  <->  ( P  .Q  [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  )  <Q 
( P  .Q  [ <. ( ( y  +o  2o )  +o  X
) ,  1o >. ]  ~Q  ) ) )
7153, 70mpbid 146 . . 3  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( P  .Q  [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  )  <Q  ( P  .Q  [
<. ( ( y  +o  2o )  +o  X
) ,  1o >. ]  ~Q  ) )
72 mulcomnqg 7345 . . . . 5  |-  ( ( P  e.  Q.  /\  [
<. ( y  +o  1o ) ,  1o >. ]  ~Q  e.  Q. )  ->  ( P  .Q  [ <. (
y  +o  1o ) ,  1o >. ]  ~Q  )  =  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P ) )
7368, 61, 72syl2anc 409 . . . 4  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( P  .Q  [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  )  =  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P ) )
74 mulcomnqg 7345 . . . . 5  |-  ( ( P  e.  Q.  /\  [
<. ( ( y  +o  2o )  +o  X
) ,  1o >. ]  ~Q  e.  Q. )  ->  ( P  .Q  [ <. ( ( y  +o  2o )  +o  X
) ,  1o >. ]  ~Q  )  =  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )
7568, 67, 74syl2anc 409 . . . 4  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( P  .Q  [ <. ( ( y  +o  2o )  +o  X
) ,  1o >. ]  ~Q  )  =  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )
7673, 75breq12d 4002 . . 3  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( ( P  .Q  [
<. ( y  +o  1o ) ,  1o >. ]  ~Q  )  <Q  ( P  .Q  [
<. ( ( y  +o  2o )  +o  X
) ,  1o >. ]  ~Q  )  <->  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P )  <Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) ) )
7771, 76mpbid 146 . 2  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( [ <. (
y  +o  1o ) ,  1o >. ]  ~Q  .Q  P )  <Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
) )
78 mulclnq 7338 . . . 4  |-  ( ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  e.  Q.  /\  P  e.  Q. )  ->  ( [ <. (
y  +o  1o ) ,  1o >. ]  ~Q  .Q  P )  e.  Q. )
7961, 68, 78syl2anc 409 . . 3  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( [ <. (
y  +o  1o ) ,  1o >. ]  ~Q  .Q  P )  e.  Q. )
80 mulclnq 7338 . . . 4  |-  ( ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  e.  Q.  /\  P  e.  Q. )  ->  ( [ <. (
( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P )  e.  Q. )
8167, 68, 80syl2anc 409 . . 3  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( [ <. (
( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P )  e.  Q. )
82 simplr1 1034 . . . 4  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  -> 
<. L ,  U >.  e. 
P. )
83 simplr2 1035 . . . 4  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  A  e.  L )
84 elprnql 7443 . . . 4  |-  ( (
<. L ,  U >.  e. 
P.  /\  A  e.  L )  ->  A  e.  Q. )
8582, 83, 84syl2anc 409 . . 3  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  A  e.  Q. )
86 ltanqg 7362 . . 3  |-  ( ( ( [ <. (
y  +o  1o ) ,  1o >. ]  ~Q  .Q  P )  e.  Q.  /\  ( [ <. (
( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P )  e.  Q.  /\  A  e.  Q. )  ->  ( ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P )  <Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
)  <->  ( A  +Q  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P
) )  <Q  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P ) ) ) )
8779, 81, 85, 86syl3anc 1233 . 2  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P )  <Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P
)  <->  ( A  +Q  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P
) )  <Q  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P ) ) ) )
8877, 87mpbid 146 1  |-  ( ( ( X  e.  om  /\  ( <. L ,  U >.  e.  P.  /\  A  e.  L  /\  P  e. 
Q. ) )  /\  y  e.  om )  ->  ( A  +Q  ( [ <. ( y  +o  1o ) ,  1o >. ]  ~Q  .Q  P
) )  <Q  ( A  +Q  ( [ <. ( ( y  +o  2o )  +o  X ) ,  1o >. ]  ~Q  .Q  P ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141    C_ wss 3121   <.cop 3586   class class class wbr 3989   suc csuc 4350   omcom 4574    X. cxp 4609  (class class class)co 5853   1oc1o 6388   2oc2o 6389    +o coa 6392   [cec 6511   /.cqs 6512   N.cnpi 7234    .N cmi 7236    <N clti 7237    ~Q ceq 7241   Q.cnq 7242    +Q cplq 7244    .Q cmq 7245    <Q cltq 7247   P.cnp 7253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-ltnqqs 7315  df-inp 7428
This theorem is referenced by:  prarloclem3step  7458
  Copyright terms: Public domain W3C validator