Proof of Theorem prarloclemlt
| Step | Hyp | Ref
| Expression |
| 1 | | 2onn 6588 |
. . . . . . . . . . . 12
 |
| 2 | | nnacl 6547 |
. . . . . . . . . . . 12
    
  |
| 3 | 1, 2 | mpan2 425 |
. . . . . . . . . . 11
     |
| 4 | | nnaword1 6580 |
. . . . . . . . . . 11
   
         |
| 5 | 3, 4 | sylan 283 |
. . . . . . . . . 10
 
         |
| 6 | | 1oex 6491 |
. . . . . . . . . . . . . 14
 |
| 7 | 6 | sucid 4453 |
. . . . . . . . . . . . 13
 |
| 8 | | df-2o 6484 |
. . . . . . . . . . . . 13
 |
| 9 | 7, 8 | eleqtrri 2272 |
. . . . . . . . . . . 12
 |
| 10 | | nnaordi 6575 |
. . . . . . . . . . . . 13
 
   
     |
| 11 | 1, 10 | mpan 424 |
. . . . . . . . . . . 12
         |
| 12 | 9, 11 | mpi 15 |
. . . . . . . . . . 11
       |
| 13 | 12 | adantr 276 |
. . . . . . . . . 10
 
  
    |
| 14 | 5, 13 | sseldd 3185 |
. . . . . . . . 9
 
  
      |
| 15 | 14 | ancoms 268 |
. . . . . . . 8
 
  
      |
| 16 | | 1pi 7399 |
. . . . . . . . . . 11
 |
| 17 | | nnppipi 7427 |
. . . . . . . . . . 11
    
  |
| 18 | 16, 17 | mpan2 425 |
. . . . . . . . . 10
     |
| 19 | 18 | adantl 277 |
. . . . . . . . 9
 
  
  |
| 20 | | o1p1e2 6535 |
. . . . . . . . . . . . . 14
   |
| 21 | | 1onn 6587 |
. . . . . . . . . . . . . . 15
 |
| 22 | | nnppipi 7427 |
. . . . . . . . . . . . . . 15
    
  |
| 23 | 21, 16, 22 | mp2an 426 |
. . . . . . . . . . . . . 14
   |
| 24 | 20, 23 | eqeltrri 2270 |
. . . . . . . . . . . . 13
 |
| 25 | | nnppipi 7427 |
. . . . . . . . . . . . 13
    
  |
| 26 | 24, 25 | mpan2 425 |
. . . . . . . . . . . 12
     |
| 27 | | pinn 7393 |
. . . . . . . . . . . 12
       |
| 28 | 26, 27 | syl 14 |
. . . . . . . . . . 11
     |
| 29 | | nnacom 6551 |
. . . . . . . . . . 11
   
           |
| 30 | 28, 29 | sylan2 286 |
. . . . . . . . . 10
 
           |
| 31 | | nnppipi 7427 |
. . . . . . . . . . 11
   
       |
| 32 | 26, 31 | sylan2 286 |
. . . . . . . . . 10
 
       |
| 33 | 30, 32 | eqeltrrd 2274 |
. . . . . . . . 9
 
       |
| 34 | | ltpiord 7403 |
. . . . . . . . 9
   
           
         |
| 35 | 19, 33, 34 | syl2anc 411 |
. . . . . . . 8
 
       
         |
| 36 | 15, 35 | mpbird 167 |
. . . . . . 7
 
         |
| 37 | | mulidpi 7402 |
. . . . . . . . 9
           |
| 38 | 19, 37 | syl 14 |
. . . . . . . 8
 
    
    |
| 39 | | mulcompig 7415 |
. . . . . . . . . 10
            
        |
| 40 | 33, 16, 39 | sylancl 413 |
. . . . . . . . 9
 
      
        |
| 41 | | mulidpi 7402 |
. . . . . . . . . 10
                 |
| 42 | 33, 41 | syl 14 |
. . . . . . . . 9
 
      
      |
| 43 | 40, 42 | eqtr3d 2231 |
. . . . . . . 8
 
             |
| 44 | 38, 43 | breq12d 4047 |
. . . . . . 7
 
           
         |
| 45 | 36, 44 | mpbird 167 |
. . . . . 6
 
             |
| 46 | | simpr 110 |
. . . . . . 7
 
   |
| 47 | | ordpipqqs 7458 |
. . . . . . . . . 10
            
     
          
             |
| 48 | 16, 47 | mpanl2 435 |
. . . . . . . . 9
   
                       
             |
| 49 | 16, 48 | mpanr2 438 |
. . . . . . . 8
   
                     
             |
| 50 | 18, 49 | sylan 283 |
. . . . . . 7
                       
             |
| 51 | 46, 33, 50 | syl2anc 411 |
. . . . . 6
 
                 
             |
| 52 | 45, 51 | mpbird 167 |
. . . . 5
 
                  |
| 53 | 52 | adantlr 477 |
. . . 4
      
 
                  |
| 54 | | opelxpi 4696 |
. . . . . . . . 9
   
          |
| 55 | 19, 16, 54 | sylancl 413 |
. . . . . . . 8
 
    
     |
| 56 | | enqex 7444 |
. . . . . . . . 9
 |
| 57 | 56 | ecelqsi 6657 |
. . . . . . . 8
    
                |
| 58 | 55, 57 | syl 14 |
. . . . . . 7
 
              |
| 59 | | df-nqqs 7432 |
. . . . . . 7
     |
| 60 | 58, 59 | eleqtrrdi 2290 |
. . . . . 6
 
          |
| 61 | 60 | adantlr 477 |
. . . . 5
      
 
          |
| 62 | | opelxpi 4696 |
. . . . . . . . 9
                  |
| 63 | 33, 16, 62 | sylancl 413 |
. . . . . . . 8
 
            |
| 64 | 56 | ecelqsi 6657 |
. . . . . . . 8
                         |
| 65 | 63, 64 | syl 14 |
. . . . . . 7
 
                |
| 66 | 65, 59 | eleqtrrdi 2290 |
. . . . . 6
 
            |
| 67 | 66 | adantlr 477 |
. . . . 5
      
 
            |
| 68 | | simplr3 1043 |
. . . . 5
      
 
   |
| 69 | | ltmnqg 7485 |
. . . . 5
                                   
                     |
| 70 | 61, 67, 68, 69 | syl3anc 1249 |
. . . 4
      
 
                 
                     |
| 71 | 53, 70 | mpbid 147 |
. . 3
      
 
      
              |
| 72 | | mulcomnqg 7467 |
. . . . 5
      
          
     
     |
| 73 | 68, 61, 72 | syl2anc 411 |
. . . 4
      
 
      
 
     
     |
| 74 | | mulcomnqg 7467 |
. . . . 5
                                   |
| 75 | 68, 67, 74 | syl2anc 411 |
. . . 4
      
 
                        |
| 76 | 73, 75 | breq12d 4047 |
. . 3
      
 
       
           
     
                 |
| 77 | 71, 76 | mpbid 147 |
. 2
      
 
                       |
| 78 | | mulclnq 7460 |
. . . 4
                     |
| 79 | 61, 68, 78 | syl2anc 411 |
. . 3
      
 
            |
| 80 | | mulclnq 7460 |
. . . 4
                         |
| 81 | 67, 68, 80 | syl2anc 411 |
. . 3
      
 
              |
| 82 | | simplr1 1041 |
. . . 4
      
 
      |
| 83 | | simplr2 1042 |
. . . 4
      
 
   |
| 84 | | elprnql 7565 |
. . . 4
    
   |
| 85 | 82, 83, 84 | syl2anc 411 |
. . 3
      
 
   |
| 86 | | ltanqg 7484 |
. . 3
                                                                       |
| 87 | 79, 81, 85, 86 | syl3anc 1249 |
. 2
      
 
                                                 |
| 88 | 77, 87 | mpbid 147 |
1
      
 
                           |