ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blsscls2 Unicode version

Theorem blsscls2 12662
Description: A smaller closed ball is contained in a larger open ball. (Contributed by Mario Carneiro, 10-Jan-2014.)
Hypotheses
Ref Expression
mopni.1  |-  J  =  ( MetOpen `  D )
blcld.3  |-  S  =  { z  e.  X  |  ( P D z )  <_  R }
Assertion
Ref Expression
blsscls2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  ->  S  C_  ( P (
ball `  D ) T ) )
Distinct variable groups:    z, D    z, R    z, P    z, T    z, X
Allowed substitution hints:    S( z)    J( z)

Proof of Theorem blsscls2
StepHypRef Expression
1 blcld.3 . 2  |-  S  =  { z  e.  X  |  ( P D z )  <_  R }
2 simplr3 1025 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  R  <  T )
3 xmetcl 12521 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  z  e.  X
)  ->  ( P D z )  e. 
RR* )
433expa 1181 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  z  e.  X )  ->  ( P D z )  e. 
RR* )
54adantlr 468 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  ( P D z )  e.  RR* )
6 simplr1 1023 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  R  e.  RR* )
7 simplr2 1024 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  T  e.  RR* )
8 xrlelttr 9589 . . . . . . . 8  |-  ( ( ( P D z )  e.  RR*  /\  R  e.  RR*  /\  T  e. 
RR* )  ->  (
( ( P D z )  <_  R  /\  R  <  T )  ->  ( P D z )  <  T
) )
98expcomd 1417 . . . . . . 7  |-  ( ( ( P D z )  e.  RR*  /\  R  e.  RR*  /\  T  e. 
RR* )  ->  ( R  <  T  ->  (
( P D z )  <_  R  ->  ( P D z )  <  T ) ) )
105, 6, 7, 9syl3anc 1216 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  ( R  <  T  ->  ( ( P D z )  <_  R  ->  ( P D z )  <  T ) ) )
112, 10mpd 13 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  ( ( P D z )  <_  R  ->  ( P D z )  <  T ) )
12 simp2 982 . . . . . . 7  |-  ( ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T )  ->  T  e.  RR* )
13 elbl2 12562 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  T  e.  RR* )  /\  ( P  e.  X  /\  z  e.  X ) )  -> 
( z  e.  ( P ( ball `  D
) T )  <->  ( P D z )  < 
T ) )
1413an4s 577 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( T  e.  RR*  /\  z  e.  X ) )  -> 
( z  e.  ( P ( ball `  D
) T )  <->  ( P D z )  < 
T ) )
1512, 14sylanr1 401 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  (
( R  e.  RR*  /\  T  e.  RR*  /\  R  <  T )  /\  z  e.  X ) )  -> 
( z  e.  ( P ( ball `  D
) T )  <->  ( P D z )  < 
T ) )
1615anassrs 397 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  ( z  e.  ( P ( ball `  D
) T )  <->  ( P D z )  < 
T ) )
1711, 16sylibrd 168 . . . 4  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  ( ( P D z )  <_  R  ->  z  e.  ( P ( ball `  D
) T ) ) )
1817ralrimiva 2505 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  ->  A. z  e.  X  ( ( P D z )  <_  R  ->  z  e.  ( P ( ball `  D
) T ) ) )
19 rabss 3174 . . 3  |-  ( { z  e.  X  | 
( P D z )  <_  R }  C_  ( P ( ball `  D ) T )  <->  A. z  e.  X  ( ( P D z )  <_  R  ->  z  e.  ( P ( ball `  D
) T ) ) )
2018, 19sylibr 133 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  ->  { z  e.  X  |  ( P D z )  <_  R }  C_  ( P (
ball `  D ) T ) )
211, 20eqsstrid 3143 1  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  ->  S  C_  ( P (
ball `  D ) T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2416   {crab 2420    C_ wss 3071   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   RR*cxr 7799    < clt 7800    <_ cle 7801   *Metcxmet 12149   ballcbl 12151   MetOpencmopn 12154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-psmet 12156  df-xmet 12157  df-bl 12159
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator