ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blsscls2 Unicode version

Theorem blsscls2 14672
Description: A smaller closed ball is contained in a larger open ball. (Contributed by Mario Carneiro, 10-Jan-2014.)
Hypotheses
Ref Expression
mopni.1  |-  J  =  ( MetOpen `  D )
blcld.3  |-  S  =  { z  e.  X  |  ( P D z )  <_  R }
Assertion
Ref Expression
blsscls2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  ->  S  C_  ( P (
ball `  D ) T ) )
Distinct variable groups:    z, D    z, R    z, P    z, T    z, X
Allowed substitution hints:    S( z)    J( z)

Proof of Theorem blsscls2
StepHypRef Expression
1 blcld.3 . 2  |-  S  =  { z  e.  X  |  ( P D z )  <_  R }
2 simplr3 1043 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  R  <  T )
3 xmetcl 14531 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  z  e.  X
)  ->  ( P D z )  e. 
RR* )
433expa 1205 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  z  e.  X )  ->  ( P D z )  e. 
RR* )
54adantlr 477 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  ( P D z )  e.  RR* )
6 simplr1 1041 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  R  e.  RR* )
7 simplr2 1042 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  T  e.  RR* )
8 xrlelttr 9875 . . . . . . . 8  |-  ( ( ( P D z )  e.  RR*  /\  R  e.  RR*  /\  T  e. 
RR* )  ->  (
( ( P D z )  <_  R  /\  R  <  T )  ->  ( P D z )  <  T
) )
98expcomd 1452 . . . . . . 7  |-  ( ( ( P D z )  e.  RR*  /\  R  e.  RR*  /\  T  e. 
RR* )  ->  ( R  <  T  ->  (
( P D z )  <_  R  ->  ( P D z )  <  T ) ) )
105, 6, 7, 9syl3anc 1249 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  ( R  <  T  ->  ( ( P D z )  <_  R  ->  ( P D z )  <  T ) ) )
112, 10mpd 13 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  ( ( P D z )  <_  R  ->  ( P D z )  <  T ) )
12 simp2 1000 . . . . . . 7  |-  ( ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T )  ->  T  e.  RR* )
13 elbl2 14572 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  T  e.  RR* )  /\  ( P  e.  X  /\  z  e.  X ) )  -> 
( z  e.  ( P ( ball `  D
) T )  <->  ( P D z )  < 
T ) )
1413an4s 588 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( T  e.  RR*  /\  z  e.  X ) )  -> 
( z  e.  ( P ( ball `  D
) T )  <->  ( P D z )  < 
T ) )
1512, 14sylanr1 404 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  (
( R  e.  RR*  /\  T  e.  RR*  /\  R  <  T )  /\  z  e.  X ) )  -> 
( z  e.  ( P ( ball `  D
) T )  <->  ( P D z )  < 
T ) )
1615anassrs 400 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  ( z  e.  ( P ( ball `  D
) T )  <->  ( P D z )  < 
T ) )
1711, 16sylibrd 169 . . . 4  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  ( ( P D z )  <_  R  ->  z  e.  ( P ( ball `  D
) T ) ) )
1817ralrimiva 2567 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  ->  A. z  e.  X  ( ( P D z )  <_  R  ->  z  e.  ( P ( ball `  D
) T ) ) )
19 rabss 3257 . . 3  |-  ( { z  e.  X  | 
( P D z )  <_  R }  C_  ( P ( ball `  D ) T )  <->  A. z  e.  X  ( ( P D z )  <_  R  ->  z  e.  ( P ( ball `  D
) T ) ) )
2018, 19sylibr 134 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  ->  { z  e.  X  |  ( P D z )  <_  R }  C_  ( P (
ball `  D ) T ) )
211, 20eqsstrid 3226 1  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  ->  S  C_  ( P (
ball `  D ) T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   {crab 2476    C_ wss 3154   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   RR*cxr 8055    < clt 8056    <_ cle 8057   *Metcxmet 14035   ballcbl 14037   MetOpencmopn 14040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-psmet 14042  df-xmet 14043  df-bl 14045
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator