| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > blsscls2 | Unicode version | ||
| Description: A smaller closed ball is contained in a larger open ball. (Contributed by Mario Carneiro, 10-Jan-2014.) |
| Ref | Expression |
|---|---|
| mopni.1 |
|
| blcld.3 |
|
| Ref | Expression |
|---|---|
| blsscls2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blcld.3 |
. 2
| |
| 2 | simplr3 1065 |
. . . . . 6
| |
| 3 | xmetcl 15020 |
. . . . . . . . 9
| |
| 4 | 3 | 3expa 1227 |
. . . . . . . 8
|
| 5 | 4 | adantlr 477 |
. . . . . . 7
|
| 6 | simplr1 1063 |
. . . . . . 7
| |
| 7 | simplr2 1064 |
. . . . . . 7
| |
| 8 | xrlelttr 9998 |
. . . . . . . 8
| |
| 9 | 8 | expcomd 1484 |
. . . . . . 7
|
| 10 | 5, 6, 7, 9 | syl3anc 1271 |
. . . . . 6
|
| 11 | 2, 10 | mpd 13 |
. . . . 5
|
| 12 | simp2 1022 |
. . . . . . 7
| |
| 13 | elbl2 15061 |
. . . . . . . 8
| |
| 14 | 13 | an4s 590 |
. . . . . . 7
|
| 15 | 12, 14 | sylanr1 404 |
. . . . . 6
|
| 16 | 15 | anassrs 400 |
. . . . 5
|
| 17 | 11, 16 | sylibrd 169 |
. . . 4
|
| 18 | 17 | ralrimiva 2603 |
. . 3
|
| 19 | rabss 3301 |
. . 3
| |
| 20 | 18, 19 | sylibr 134 |
. 2
|
| 21 | 1, 20 | eqsstrid 3270 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-map 6795 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-psmet 14501 df-xmet 14502 df-bl 14504 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |