ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blsscls2 Unicode version

Theorem blsscls2 14078
Description: A smaller closed ball is contained in a larger open ball. (Contributed by Mario Carneiro, 10-Jan-2014.)
Hypotheses
Ref Expression
mopni.1  |-  J  =  ( MetOpen `  D )
blcld.3  |-  S  =  { z  e.  X  |  ( P D z )  <_  R }
Assertion
Ref Expression
blsscls2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  ->  S  C_  ( P (
ball `  D ) T ) )
Distinct variable groups:    z, D    z, R    z, P    z, T    z, X
Allowed substitution hints:    S( z)    J( z)

Proof of Theorem blsscls2
StepHypRef Expression
1 blcld.3 . 2  |-  S  =  { z  e.  X  |  ( P D z )  <_  R }
2 simplr3 1041 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  R  <  T )
3 xmetcl 13937 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  z  e.  X
)  ->  ( P D z )  e. 
RR* )
433expa 1203 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  z  e.  X )  ->  ( P D z )  e. 
RR* )
54adantlr 477 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  ( P D z )  e.  RR* )
6 simplr1 1039 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  R  e.  RR* )
7 simplr2 1040 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  T  e.  RR* )
8 xrlelttr 9808 . . . . . . . 8  |-  ( ( ( P D z )  e.  RR*  /\  R  e.  RR*  /\  T  e. 
RR* )  ->  (
( ( P D z )  <_  R  /\  R  <  T )  ->  ( P D z )  <  T
) )
98expcomd 1441 . . . . . . 7  |-  ( ( ( P D z )  e.  RR*  /\  R  e.  RR*  /\  T  e. 
RR* )  ->  ( R  <  T  ->  (
( P D z )  <_  R  ->  ( P D z )  <  T ) ) )
105, 6, 7, 9syl3anc 1238 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  ( R  <  T  ->  ( ( P D z )  <_  R  ->  ( P D z )  <  T ) ) )
112, 10mpd 13 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  ( ( P D z )  <_  R  ->  ( P D z )  <  T ) )
12 simp2 998 . . . . . . 7  |-  ( ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T )  ->  T  e.  RR* )
13 elbl2 13978 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  T  e.  RR* )  /\  ( P  e.  X  /\  z  e.  X ) )  -> 
( z  e.  ( P ( ball `  D
) T )  <->  ( P D z )  < 
T ) )
1413an4s 588 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( T  e.  RR*  /\  z  e.  X ) )  -> 
( z  e.  ( P ( ball `  D
) T )  <->  ( P D z )  < 
T ) )
1512, 14sylanr1 404 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  (
( R  e.  RR*  /\  T  e.  RR*  /\  R  <  T )  /\  z  e.  X ) )  -> 
( z  e.  ( P ( ball `  D
) T )  <->  ( P D z )  < 
T ) )
1615anassrs 400 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  ( z  e.  ( P ( ball `  D
) T )  <->  ( P D z )  < 
T ) )
1711, 16sylibrd 169 . . . 4  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  ( ( P D z )  <_  R  ->  z  e.  ( P ( ball `  D
) T ) ) )
1817ralrimiva 2550 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  ->  A. z  e.  X  ( ( P D z )  <_  R  ->  z  e.  ( P ( ball `  D
) T ) ) )
19 rabss 3234 . . 3  |-  ( { z  e.  X  | 
( P D z )  <_  R }  C_  ( P ( ball `  D ) T )  <->  A. z  e.  X  ( ( P D z )  <_  R  ->  z  e.  ( P ( ball `  D
) T ) ) )
2018, 19sylibr 134 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  ->  { z  e.  X  |  ( P D z )  <_  R }  C_  ( P (
ball `  D ) T ) )
211, 20eqsstrid 3203 1  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  ->  S  C_  ( P (
ball `  D ) T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   {crab 2459    C_ wss 3131   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   RR*cxr 7993    < clt 7994    <_ cle 7995   *Metcxmet 13525   ballcbl 13527   MetOpencmopn 13530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-map 6652  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-psmet 13532  df-xmet 13533  df-bl 13535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator