ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blsscls2 Unicode version

Theorem blsscls2 15161
Description: A smaller closed ball is contained in a larger open ball. (Contributed by Mario Carneiro, 10-Jan-2014.)
Hypotheses
Ref Expression
mopni.1  |-  J  =  ( MetOpen `  D )
blcld.3  |-  S  =  { z  e.  X  |  ( P D z )  <_  R }
Assertion
Ref Expression
blsscls2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  ->  S  C_  ( P (
ball `  D ) T ) )
Distinct variable groups:    z, D    z, R    z, P    z, T    z, X
Allowed substitution hints:    S( z)    J( z)

Proof of Theorem blsscls2
StepHypRef Expression
1 blcld.3 . 2  |-  S  =  { z  e.  X  |  ( P D z )  <_  R }
2 simplr3 1065 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  R  <  T )
3 xmetcl 15020 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  z  e.  X
)  ->  ( P D z )  e. 
RR* )
433expa 1227 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  z  e.  X )  ->  ( P D z )  e. 
RR* )
54adantlr 477 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  ( P D z )  e.  RR* )
6 simplr1 1063 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  R  e.  RR* )
7 simplr2 1064 . . . . . . 7  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  T  e.  RR* )
8 xrlelttr 9998 . . . . . . . 8  |-  ( ( ( P D z )  e.  RR*  /\  R  e.  RR*  /\  T  e. 
RR* )  ->  (
( ( P D z )  <_  R  /\  R  <  T )  ->  ( P D z )  <  T
) )
98expcomd 1484 . . . . . . 7  |-  ( ( ( P D z )  e.  RR*  /\  R  e.  RR*  /\  T  e. 
RR* )  ->  ( R  <  T  ->  (
( P D z )  <_  R  ->  ( P D z )  <  T ) ) )
105, 6, 7, 9syl3anc 1271 . . . . . 6  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  ( R  <  T  ->  ( ( P D z )  <_  R  ->  ( P D z )  <  T ) ) )
112, 10mpd 13 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  ( ( P D z )  <_  R  ->  ( P D z )  <  T ) )
12 simp2 1022 . . . . . . 7  |-  ( ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T )  ->  T  e.  RR* )
13 elbl2 15061 . . . . . . . 8  |-  ( ( ( D  e.  ( *Met `  X
)  /\  T  e.  RR* )  /\  ( P  e.  X  /\  z  e.  X ) )  -> 
( z  e.  ( P ( ball `  D
) T )  <->  ( P D z )  < 
T ) )
1413an4s 590 . . . . . . 7  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( T  e.  RR*  /\  z  e.  X ) )  -> 
( z  e.  ( P ( ball `  D
) T )  <->  ( P D z )  < 
T ) )
1512, 14sylanr1 404 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  (
( R  e.  RR*  /\  T  e.  RR*  /\  R  <  T )  /\  z  e.  X ) )  -> 
( z  e.  ( P ( ball `  D
) T )  <->  ( P D z )  < 
T ) )
1615anassrs 400 . . . . 5  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  ( z  e.  ( P ( ball `  D
) T )  <->  ( P D z )  < 
T ) )
1711, 16sylibrd 169 . . . 4  |-  ( ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  /\  z  e.  X )  ->  ( ( P D z )  <_  R  ->  z  e.  ( P ( ball `  D
) T ) ) )
1817ralrimiva 2603 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  ->  A. z  e.  X  ( ( P D z )  <_  R  ->  z  e.  ( P ( ball `  D
) T ) ) )
19 rabss 3301 . . 3  |-  ( { z  e.  X  | 
( P D z )  <_  R }  C_  ( P ( ball `  D ) T )  <->  A. z  e.  X  ( ( P D z )  <_  R  ->  z  e.  ( P ( ball `  D
) T ) ) )
2018, 19sylibr 134 . 2  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  ->  { z  e.  X  |  ( P D z )  <_  R }  C_  ( P (
ball `  D ) T ) )
211, 20eqsstrid 3270 1  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  < 
T ) )  ->  S  C_  ( P (
ball `  D ) T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   {crab 2512    C_ wss 3197   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   RR*cxr 8176    < clt 8177    <_ cle 8178   *Metcxmet 14494   ballcbl 14496   MetOpencmopn 14499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-map 6795  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-psmet 14501  df-xmet 14502  df-bl 14504
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator