ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  summodclem2 Unicode version

Theorem summodclem2 10990
Description: Lemma for summodc 10991. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
Hypotheses
Ref Expression
isummo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
isummo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
summodclem2.g  |-  G  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) )
Assertion
Ref Expression
summodclem2  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  F
)  ~~>  x ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) )  ->  x  =  y ) )
Distinct variable groups:    k, n, A   
n, F    ph, k, n    A, f, j, m, k, n    B, n    f, F, k, m    ph, f, m    x, f, k, m, n    y, f, m
Allowed substitution hints:    ph( x, y, j)    A( x, y)    B( x, y, f, j, k, m)    F( x, y, j)    G( x, y, f, j, k, m, n)

Proof of Theorem summodclem2
Dummy variables  a  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5353 . . . . 5  |-  ( m  =  a  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  a )
)
21sseq2d 3077 . . . 4  |-  ( m  =  a  ->  ( A  C_  ( ZZ>= `  m
)  <->  A  C_  ( ZZ>= `  a ) ) )
31raleqdv 2590 . . . 4  |-  ( m  =  a  ->  ( A. j  e.  ( ZZ>=
`  m )DECID  j  e.  A  <->  A. j  e.  (
ZZ>= `  a )DECID  j  e.  A ) )
4 seqeq1 10062 . . . . 5  |-  ( m  =  a  ->  seq m (  +  ,  F )  =  seq a (  +  ,  F ) )
54breq1d 3885 . . . 4  |-  ( m  =  a  ->  (  seq m (  +  ,  F )  ~~>  x  <->  seq a
(  +  ,  F
)  ~~>  x ) )
62, 3, 53anbi123d 1258 . . 3  |-  ( m  =  a  ->  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  ,  F )  ~~>  x )  <-> 
( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) ) )
76cbvrexv 2613 . 2  |-  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  F
)  ~~>  x )  <->  E. a  e.  ZZ  ( A  C_  ( ZZ>= `  a )  /\  A. j  e.  (
ZZ>= `  a )DECID  j  e.  A  /\  seq a
(  +  ,  F
)  ~~>  x ) )
8 simplr3 993 . . . . . . . . 9  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  seq a (  +  ,  F )  ~~>  x )
9 simplr1 991 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  A  C_  ( ZZ>= `  a
) )
10 uzssz 9195 . . . . . . . . . . . 12  |-  ( ZZ>= `  a )  C_  ZZ
119, 10syl6ss 3059 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  A  C_  ZZ )
12 1zzd 8933 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
1  e.  ZZ )
13 simprl 501 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  m  e.  NN )
1413nnzd 9024 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  m  e.  ZZ )
1512, 14fzfigd 10045 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
( 1 ... m
)  e.  Fin )
16 simprr 502 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
f : ( 1 ... m ) -1-1-onto-> A )
17 f1oeng 6581 . . . . . . . . . . . . . 14  |-  ( ( ( 1 ... m
)  e.  Fin  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (
1 ... m )  ~~  A )
1815, 16, 17syl2anc 406 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
( 1 ... m
)  ~~  A )
1918ensymd 6607 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  A  ~~  ( 1 ... m ) )
20 enfii 6697 . . . . . . . . . . . 12  |-  ( ( ( 1 ... m
)  e.  Fin  /\  A  ~~  ( 1 ... m ) )  ->  A  e.  Fin )
2115, 19, 20syl2anc 406 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  A  e.  Fin )
22 zfz1iso 10425 . . . . . . . . . . 11  |-  ( ( A  C_  ZZ  /\  A  e.  Fin )  ->  E. g 
g  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) )
2311, 21, 22syl2anc 406 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  E. g  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) )
24 isummo.1 . . . . . . . . . . . . 13  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
25 simplll 503 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A ) ) )  ->  ph )
26 isummo.2 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
2725, 26sylan 279 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  a )  /\  A. j  e.  (
ZZ>= `  a )DECID  j  e.  A  /\  seq a
(  +  ,  F
)  ~~>  x ) )  /\  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A ) ) )  /\  k  e.  A
)  ->  B  e.  CC )
28 eleq1w 2160 . . . . . . . . . . . . . . 15  |-  ( j  =  k  ->  (
j  e.  A  <->  k  e.  A ) )
2928dcbid 792 . . . . . . . . . . . . . 14  |-  ( j  =  k  ->  (DECID  j  e.  A  <-> DECID  k  e.  A )
)
30 simpr2 956 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  a
)  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a
(  +  ,  F
)  ~~>  x ) )  ->  A. j  e.  (
ZZ>= `  a )DECID  j  e.  A )
3130ad2antrr 475 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  a )  /\  A. j  e.  (
ZZ>= `  a )DECID  j  e.  A  /\  seq a
(  +  ,  F
)  ~~>  x ) )  /\  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A ) ) )  /\  k  e.  (
ZZ>= `  a ) )  ->  A. j  e.  (
ZZ>= `  a )DECID  j  e.  A )
32 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  a )  /\  A. j  e.  (
ZZ>= `  a )DECID  j  e.  A  /\  seq a
(  +  ,  F
)  ~~>  x ) )  /\  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A ) ) )  /\  k  e.  (
ZZ>= `  a ) )  ->  k  e.  (
ZZ>= `  a ) )
3329, 31, 32rspcdva 2749 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  a )  /\  A. j  e.  (
ZZ>= `  a )DECID  j  e.  A  /\  seq a
(  +  ,  F
)  ~~>  x ) )  /\  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A ) ) )  /\  k  e.  (
ZZ>= `  a ) )  -> DECID 
k  e.  A )
34 summodclem2.g . . . . . . . . . . . . 13  |-  G  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) )
35 eqid 2100 . . . . . . . . . . . . 13  |-  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( g `  n
)  /  k ]_ B ,  0 ) )  =  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( g `  n
)  /  k ]_ B ,  0 ) )
36 simprll 507 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A ) ) )  ->  m  e.  NN )
37 simpllr 504 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A ) ) )  ->  a  e.  ZZ )
38 simplr1 991 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A ) ) )  ->  A  C_  ( ZZ>=
`  a ) )
39 simprlr 508 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A ) ) )  ->  f : ( 1 ... m ) -1-1-onto-> A )
40 simprr 502 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A ) ) )  ->  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) )
4124, 27, 33, 34, 35, 36, 37, 38, 39, 40summodclem2a 10989 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A ) ) )  ->  seq a (  +  ,  F )  ~~>  (  seq 1 (  +  ,  G ) `  m
) )
4241expr 370 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
( g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
)  ->  seq a
(  +  ,  F
)  ~~>  (  seq 1
(  +  ,  G
) `  m )
) )
4342exlimdv 1758 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
( E. g  g 
Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A )  ->  seq a (  +  ,  F )  ~~>  (  seq 1 (  +  ,  G ) `  m
) ) )
4423, 43mpd 13 . . . . . . . . 9  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  seq a (  +  ,  F )  ~~>  (  seq 1 (  +  ,  G ) `  m
) )
45 climuni 10901 . . . . . . . . 9  |-  ( (  seq a (  +  ,  F )  ~~>  x  /\  seq a (  +  ,  F )  ~~>  (  seq 1 (  +  ,  G ) `  m
) )  ->  x  =  (  seq 1
(  +  ,  G
) `  m )
)
468, 44, 45syl2anc 406 . . . . . . . 8  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  x  =  (  seq 1 (  +  ,  G ) `  m
) )
4746anassrs 395 . . . . . . 7  |-  ( ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  a )  /\  A. j  e.  (
ZZ>= `  a )DECID  j  e.  A  /\  seq a
(  +  ,  F
)  ~~>  x ) )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  x  =  (  seq 1 (  +  ,  G ) `  m ) )
48 eqeq2 2109 . . . . . . 7  |-  ( y  =  (  seq 1
(  +  ,  G
) `  m )  ->  ( x  =  y  <-> 
x  =  (  seq 1 (  +  ,  G ) `  m
) ) )
4947, 48syl5ibrcom 156 . . . . . 6  |-  ( ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  a )  /\  A. j  e.  (
ZZ>= `  a )DECID  j  e.  A  /\  seq a
(  +  ,  F
)  ~~>  x ) )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  ( y  =  (  seq 1
(  +  ,  G
) `  m )  ->  x  =  y ) )
5049expimpd 358 . . . . 5  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  m  e.  NN )  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m ) )  ->  x  =  y )
)
5150exlimdv 1758 . . . 4  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  m  e.  NN )  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m ) )  ->  x  =  y )
)
5251rexlimdva 2508 . . 3  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  a
)  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a
(  +  ,  F
)  ~~>  x ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) )  ->  x  =  y ) )
5352r19.29an 2532 . 2  |-  ( (
ph  /\  E. a  e.  ZZ  ( A  C_  ( ZZ>= `  a )  /\  A. j  e.  (
ZZ>= `  a )DECID  j  e.  A  /\  seq a
(  +  ,  F
)  ~~>  x ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) )  ->  x  =  y ) )
547, 53sylan2b 283 1  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  F
)  ~~>  x ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) )  ->  x  =  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 786    /\ w3a 930    = wceq 1299   E.wex 1436    e. wcel 1448   A.wral 2375   E.wrex 2376   [_csb 2955    C_ wss 3021   ifcif 3421   class class class wbr 3875    |-> cmpt 3929   -1-1-onto->wf1o 5058   ` cfv 5059    Isom wiso 5060  (class class class)co 5706    ~~ cen 6562   Fincfn 6564   CCcc 7498   0cc0 7500   1c1 7501    + caddc 7503    < clt 7672    <_ cle 7673   NNcn 8578   ZZcz 8906   ZZ>=cuz 9176   ...cfz 9631    seqcseq 10059  ♯chash 10362    ~~> cli 10886
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613  ax-arch 7614  ax-caucvg 7615
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-isom 5068  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-frec 6218  df-1o 6243  df-oadd 6247  df-er 6359  df-en 6565  df-dom 6566  df-fin 6567  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-3 8638  df-4 8639  df-n0 8830  df-z 8907  df-uz 9177  df-q 9262  df-rp 9292  df-fz 9632  df-fzo 9761  df-seqfrec 10060  df-exp 10134  df-ihash 10363  df-cj 10455  df-re 10456  df-im 10457  df-rsqrt 10610  df-abs 10611  df-clim 10887
This theorem is referenced by:  summodc  10991
  Copyright terms: Public domain W3C validator