ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  summodclem2 Unicode version

Theorem summodclem2 11151
Description: Lemma for summodc 11152. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
Hypotheses
Ref Expression
isummo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
isummo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
summodclem2.g  |-  G  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) )
Assertion
Ref Expression
summodclem2  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  F
)  ~~>  x ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) )  ->  x  =  y ) )
Distinct variable groups:    k, n, A   
n, F    ph, k, n    A, f, j, m, k, n    B, n    f, F, k, m    ph, f, m    x, f, k, m, n    y, f, m
Allowed substitution hints:    ph( x, y, j)    A( x, y)    B( x, y, f, j, k, m)    F( x, y, j)    G( x, y, f, j, k, m, n)

Proof of Theorem summodclem2
Dummy variables  a  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5421 . . . . 5  |-  ( m  =  a  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  a )
)
21sseq2d 3127 . . . 4  |-  ( m  =  a  ->  ( A  C_  ( ZZ>= `  m
)  <->  A  C_  ( ZZ>= `  a ) ) )
31raleqdv 2632 . . . 4  |-  ( m  =  a  ->  ( A. j  e.  ( ZZ>=
`  m )DECID  j  e.  A  <->  A. j  e.  (
ZZ>= `  a )DECID  j  e.  A ) )
4 seqeq1 10221 . . . . 5  |-  ( m  =  a  ->  seq m (  +  ,  F )  =  seq a (  +  ,  F ) )
54breq1d 3939 . . . 4  |-  ( m  =  a  ->  (  seq m (  +  ,  F )  ~~>  x  <->  seq a
(  +  ,  F
)  ~~>  x ) )
62, 3, 53anbi123d 1290 . . 3  |-  ( m  =  a  ->  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  ,  F )  ~~>  x )  <-> 
( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) ) )
76cbvrexv 2655 . 2  |-  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  F
)  ~~>  x )  <->  E. a  e.  ZZ  ( A  C_  ( ZZ>= `  a )  /\  A. j  e.  (
ZZ>= `  a )DECID  j  e.  A  /\  seq a
(  +  ,  F
)  ~~>  x ) )
8 simplr3 1025 . . . . . . . . 9  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  seq a (  +  ,  F )  ~~>  x )
9 simplr1 1023 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  A  C_  ( ZZ>= `  a
) )
10 uzssz 9345 . . . . . . . . . . . 12  |-  ( ZZ>= `  a )  C_  ZZ
119, 10sstrdi 3109 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  A  C_  ZZ )
12 1zzd 9081 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
1  e.  ZZ )
13 simprl 520 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  m  e.  NN )
1413nnzd 9172 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  m  e.  ZZ )
1512, 14fzfigd 10204 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
( 1 ... m
)  e.  Fin )
16 simprr 521 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
f : ( 1 ... m ) -1-1-onto-> A )
17 f1oeng 6651 . . . . . . . . . . . . . 14  |-  ( ( ( 1 ... m
)  e.  Fin  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (
1 ... m )  ~~  A )
1815, 16, 17syl2anc 408 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
( 1 ... m
)  ~~  A )
1918ensymd 6677 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  A  ~~  ( 1 ... m ) )
20 enfii 6768 . . . . . . . . . . . 12  |-  ( ( ( 1 ... m
)  e.  Fin  /\  A  ~~  ( 1 ... m ) )  ->  A  e.  Fin )
2115, 19, 20syl2anc 408 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  A  e.  Fin )
22 zfz1iso 10584 . . . . . . . . . . 11  |-  ( ( A  C_  ZZ  /\  A  e.  Fin )  ->  E. g 
g  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) )
2311, 21, 22syl2anc 408 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  E. g  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) )
24 isummo.1 . . . . . . . . . . . . 13  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
25 simplll 522 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A ) ) )  ->  ph )
26 isummo.2 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
2725, 26sylan 281 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  a )  /\  A. j  e.  (
ZZ>= `  a )DECID  j  e.  A  /\  seq a
(  +  ,  F
)  ~~>  x ) )  /\  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A ) ) )  /\  k  e.  A
)  ->  B  e.  CC )
28 eleq1w 2200 . . . . . . . . . . . . . . 15  |-  ( j  =  k  ->  (
j  e.  A  <->  k  e.  A ) )
2928dcbid 823 . . . . . . . . . . . . . 14  |-  ( j  =  k  ->  (DECID  j  e.  A  <-> DECID  k  e.  A )
)
30 simpr2 988 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  a
)  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a
(  +  ,  F
)  ~~>  x ) )  ->  A. j  e.  (
ZZ>= `  a )DECID  j  e.  A )
3130ad2antrr 479 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  a )  /\  A. j  e.  (
ZZ>= `  a )DECID  j  e.  A  /\  seq a
(  +  ,  F
)  ~~>  x ) )  /\  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A ) ) )  /\  k  e.  (
ZZ>= `  a ) )  ->  A. j  e.  (
ZZ>= `  a )DECID  j  e.  A )
32 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  a )  /\  A. j  e.  (
ZZ>= `  a )DECID  j  e.  A  /\  seq a
(  +  ,  F
)  ~~>  x ) )  /\  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A ) ) )  /\  k  e.  (
ZZ>= `  a ) )  ->  k  e.  (
ZZ>= `  a ) )
3329, 31, 32rspcdva 2794 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  a )  /\  A. j  e.  (
ZZ>= `  a )DECID  j  e.  A  /\  seq a
(  +  ,  F
)  ~~>  x ) )  /\  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A ) ) )  /\  k  e.  (
ZZ>= `  a ) )  -> DECID 
k  e.  A )
34 summodclem2.g . . . . . . . . . . . . 13  |-  G  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) )
35 eqid 2139 . . . . . . . . . . . . 13  |-  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( g `  n
)  /  k ]_ B ,  0 ) )  =  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( g `  n
)  /  k ]_ B ,  0 ) )
36 simprll 526 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A ) ) )  ->  m  e.  NN )
37 simpllr 523 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A ) ) )  ->  a  e.  ZZ )
38 simplr1 1023 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A ) ) )  ->  A  C_  ( ZZ>=
`  a ) )
39 simprlr 527 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A ) ) )  ->  f : ( 1 ... m ) -1-1-onto-> A )
40 simprr 521 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A ) ) )  ->  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) )
4124, 27, 33, 34, 35, 36, 37, 38, 39, 40summodclem2a 11150 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A ) ) )  ->  seq a (  +  ,  F )  ~~>  (  seq 1 (  +  ,  G ) `  m
) )
4241expr 372 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
( g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
)  ->  seq a
(  +  ,  F
)  ~~>  (  seq 1
(  +  ,  G
) `  m )
) )
4342exlimdv 1791 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
( E. g  g 
Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A )  ->  seq a (  +  ,  F )  ~~>  (  seq 1 (  +  ,  G ) `  m
) ) )
4423, 43mpd 13 . . . . . . . . 9  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  seq a (  +  ,  F )  ~~>  (  seq 1 (  +  ,  G ) `  m
) )
45 climuni 11062 . . . . . . . . 9  |-  ( (  seq a (  +  ,  F )  ~~>  x  /\  seq a (  +  ,  F )  ~~>  (  seq 1 (  +  ,  G ) `  m
) )  ->  x  =  (  seq 1
(  +  ,  G
) `  m )
)
468, 44, 45syl2anc 408 . . . . . . . 8  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  x  =  (  seq 1 (  +  ,  G ) `  m
) )
4746anassrs 397 . . . . . . 7  |-  ( ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  a )  /\  A. j  e.  (
ZZ>= `  a )DECID  j  e.  A  /\  seq a
(  +  ,  F
)  ~~>  x ) )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  x  =  (  seq 1 (  +  ,  G ) `  m ) )
48 eqeq2 2149 . . . . . . 7  |-  ( y  =  (  seq 1
(  +  ,  G
) `  m )  ->  ( x  =  y  <-> 
x  =  (  seq 1 (  +  ,  G ) `  m
) ) )
4947, 48syl5ibrcom 156 . . . . . 6  |-  ( ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  a )  /\  A. j  e.  (
ZZ>= `  a )DECID  j  e.  A  /\  seq a
(  +  ,  F
)  ~~>  x ) )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  ( y  =  (  seq 1
(  +  ,  G
) `  m )  ->  x  =  y ) )
5049expimpd 360 . . . . 5  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  m  e.  NN )  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m ) )  ->  x  =  y )
)
5150exlimdv 1791 . . . 4  |-  ( ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>=
`  a )  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a (  +  ,  F )  ~~>  x ) )  /\  m  e.  NN )  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m ) )  ->  x  =  y )
)
5251rexlimdva 2549 . . 3  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  ( A  C_  ( ZZ>= `  a
)  /\  A. j  e.  ( ZZ>= `  a )DECID  j  e.  A  /\  seq a
(  +  ,  F
)  ~~>  x ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) )  ->  x  =  y ) )
5352r19.29an 2574 . 2  |-  ( (
ph  /\  E. a  e.  ZZ  ( A  C_  ( ZZ>= `  a )  /\  A. j  e.  (
ZZ>= `  a )DECID  j  e.  A  /\  seq a
(  +  ,  F
)  ~~>  x ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) )  ->  x  =  y ) )
547, 53sylan2b 285 1  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  F
)  ~~>  x ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  y  =  (  seq 1 (  +  ,  G ) `  m
) )  ->  x  =  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 819    /\ w3a 962    = wceq 1331   E.wex 1468    e. wcel 1480   A.wral 2416   E.wrex 2417   [_csb 3003    C_ wss 3071   ifcif 3474   class class class wbr 3929    |-> cmpt 3989   -1-1-onto->wf1o 5122   ` cfv 5123    Isom wiso 5124  (class class class)co 5774    ~~ cen 6632   Fincfn 6634   CCcc 7618   0cc0 7620   1c1 7621    + caddc 7623    < clt 7800    <_ cle 7801   NNcn 8720   ZZcz 9054   ZZ>=cuz 9326   ...cfz 9790    seqcseq 10218  ♯chash 10521    ~~> cli 11047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048
This theorem is referenced by:  summodc  11152
  Copyright terms: Public domain W3C validator