ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcdvdstr Unicode version

Theorem pcdvdstr 12465
Description: The prime count increases under the divisibility relation. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
pcdvdstr  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  B ) )

Proof of Theorem pcdvdstr
StepHypRef Expression
1 0z 9328 . . . . . . 7  |-  0  e.  ZZ
2 zq 9691 . . . . . . 7  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
31, 2ax-mp 5 . . . . . 6  |-  0  e.  QQ
4 pcxcl 12449 . . . . . 6  |-  ( ( P  e.  Prime  /\  0  e.  QQ )  ->  ( P  pCnt  0 )  e. 
RR* )
53, 4mpan2 425 . . . . 5  |-  ( P  e.  Prime  ->  ( P 
pCnt  0 )  e. 
RR* )
65xrleidd 9867 . . . 4  |-  ( P  e.  Prime  ->  ( P 
pCnt  0 )  <_ 
( P  pCnt  0
) )
76ad2antrr 488 . . 3  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  ( P  pCnt  0 )  <_  ( P  pCnt  0 ) )
8 simpr 110 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  A  = 
0 )
98oveq2d 5934 . . 3  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  ( P  pCnt  A )  =  ( P  pCnt  0 ) )
10 simplr3 1043 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  A  ||  B
)
118, 10eqbrtrrd 4053 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  0  ||  B )
12 simplr2 1042 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  B  e.  ZZ )
13 0dvds 11954 . . . . . 6  |-  ( B  e.  ZZ  ->  (
0  ||  B  <->  B  = 
0 ) )
1412, 13syl 14 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  ( 0 
||  B  <->  B  = 
0 ) )
1511, 14mpbid 147 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  B  = 
0 )
1615oveq2d 5934 . . 3  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  ( P  pCnt  B )  =  ( P  pCnt  0 ) )
177, 9, 163brtr4d 4061 . 2  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  ( P  pCnt  A )  <_  ( P  pCnt  B ) )
18 prmnn 12248 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  NN )
1918ad2antrr 488 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  P  e.  NN )
20 simpll 527 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  P  e.  Prime )
21 simplr1 1041 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  A  e.  ZZ )
22 simpr 110 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  A  =/=  0 )
23 pczcl 12436 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  NN0 )
2420, 21, 22, 23syl12anc 1247 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  ( P  pCnt  A )  e.  NN0 )
2519, 24nnexpcld 10766 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  ( P ^ ( P  pCnt  A ) )  e.  NN )
2625nnzd 9438 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  ( P ^ ( P  pCnt  A ) )  e.  ZZ )
27 simplr2 1042 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  B  e.  ZZ )
28 pczdvds 12452 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) ) 
||  A )
2920, 21, 22, 28syl12anc 1247 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  ( P ^ ( P  pCnt  A ) )  ||  A
)
30 simplr3 1043 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  A  ||  B
)
3126, 21, 27, 29, 30dvdstrd 11973 . . 3  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  ( P ^ ( P  pCnt  A ) )  ||  B
)
32 pcdvdsb 12458 . . . 4  |-  ( ( P  e.  Prime  /\  B  e.  ZZ  /\  ( P 
pCnt  A )  e.  NN0 )  ->  ( ( P 
pCnt  A )  <_  ( P  pCnt  B )  <->  ( P ^ ( P  pCnt  A ) )  ||  B
) )
3320, 27, 24, 32syl3anc 1249 . . 3  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  ( ( P  pCnt  A )  <_ 
( P  pCnt  B
)  <->  ( P ^
( P  pCnt  A
) )  ||  B
) )
3431, 33mpbird 167 . 2  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  ( P  pCnt  A )  <_  ( P  pCnt  B ) )
35 simpr1 1005 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  ->  A  e.  ZZ )
36 zdceq 9392 . . . 4  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  -> DECID  A  =  0 )
3735, 1, 36sylancl 413 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  -> DECID  A  =  0 )
38 dcne 2375 . . 3  |-  (DECID  A  =  0  <->  ( A  =  0  \/  A  =/=  0 ) )
3937, 38sylib 122 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  -> 
( A  =  0  \/  A  =/=  0
) )
4017, 34, 39mpjaodan 799 1  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2164    =/= wne 2364   class class class wbr 4029  (class class class)co 5918   0cc0 7872   RR*cxr 8053    <_ cle 8055   NNcn 8982   NN0cn0 9240   ZZcz 9317   QQcq 9684   ^cexp 10609    || cdvds 11930   Primecprime 12245    pCnt cpc 12422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-2o 6470  df-er 6587  df-en 6795  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080  df-prm 12246  df-pc 12423
This theorem is referenced by:  pcgcd1  12466  pc2dvds  12468
  Copyright terms: Public domain W3C validator