ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcdvdstr Unicode version

Theorem pcdvdstr 12216
Description: The prime count increases under the divisibility relation. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
pcdvdstr  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  B ) )

Proof of Theorem pcdvdstr
StepHypRef Expression
1 0z 9184 . . . . . . 7  |-  0  e.  ZZ
2 zq 9542 . . . . . . 7  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
31, 2ax-mp 5 . . . . . 6  |-  0  e.  QQ
4 pcxcl 12201 . . . . . 6  |-  ( ( P  e.  Prime  /\  0  e.  QQ )  ->  ( P  pCnt  0 )  e. 
RR* )
53, 4mpan2 422 . . . . 5  |-  ( P  e.  Prime  ->  ( P 
pCnt  0 )  e. 
RR* )
65xrleidd 9715 . . . 4  |-  ( P  e.  Prime  ->  ( P 
pCnt  0 )  <_ 
( P  pCnt  0
) )
76ad2antrr 480 . . 3  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  ( P  pCnt  0 )  <_  ( P  pCnt  0 ) )
8 simpr 109 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  A  = 
0 )
98oveq2d 5843 . . 3  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  ( P  pCnt  A )  =  ( P  pCnt  0 ) )
10 simplr3 1026 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  A  ||  B
)
118, 10eqbrtrrd 3991 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  0  ||  B )
12 simplr2 1025 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  B  e.  ZZ )
13 0dvds 11719 . . . . . 6  |-  ( B  e.  ZZ  ->  (
0  ||  B  <->  B  = 
0 ) )
1412, 13syl 14 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  ( 0 
||  B  <->  B  = 
0 ) )
1511, 14mpbid 146 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  B  = 
0 )
1615oveq2d 5843 . . 3  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  ( P  pCnt  B )  =  ( P  pCnt  0 ) )
177, 9, 163brtr4d 3999 . 2  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  ( P  pCnt  A )  <_  ( P  pCnt  B ) )
18 prmnn 12003 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  NN )
1918ad2antrr 480 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  P  e.  NN )
20 simpll 519 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  P  e.  Prime )
21 simplr1 1024 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  A  e.  ZZ )
22 simpr 109 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  A  =/=  0 )
23 pczcl 12189 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  NN0 )
2420, 21, 22, 23syl12anc 1218 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  ( P  pCnt  A )  e.  NN0 )
2519, 24nnexpcld 10583 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  ( P ^ ( P  pCnt  A ) )  e.  NN )
2625nnzd 9291 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  ( P ^ ( P  pCnt  A ) )  e.  ZZ )
27 simplr2 1025 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  B  e.  ZZ )
28 pczdvds 12203 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) ) 
||  A )
2920, 21, 22, 28syl12anc 1218 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  ( P ^ ( P  pCnt  A ) )  ||  A
)
30 simplr3 1026 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  A  ||  B
)
3126, 21, 27, 29, 30dvdstrd 11737 . . 3  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  ( P ^ ( P  pCnt  A ) )  ||  B
)
32 pcdvdsb 12209 . . . 4  |-  ( ( P  e.  Prime  /\  B  e.  ZZ  /\  ( P 
pCnt  A )  e.  NN0 )  ->  ( ( P 
pCnt  A )  <_  ( P  pCnt  B )  <->  ( P ^ ( P  pCnt  A ) )  ||  B
) )
3320, 27, 24, 32syl3anc 1220 . . 3  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  ( ( P  pCnt  A )  <_ 
( P  pCnt  B
)  <->  ( P ^
( P  pCnt  A
) )  ||  B
) )
3431, 33mpbird 166 . 2  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  ( P  pCnt  A )  <_  ( P  pCnt  B ) )
35 simpr1 988 . . . 4  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  ->  A  e.  ZZ )
36 zdceq 9245 . . . 4  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  -> DECID  A  =  0 )
3735, 1, 36sylancl 410 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  -> DECID  A  =  0 )
38 dcne 2338 . . 3  |-  (DECID  A  =  0  <->  ( A  =  0  \/  A  =/=  0 ) )
3937, 38sylib 121 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  -> 
( A  =  0  \/  A  =/=  0
) )
4017, 34, 39mpjaodan 788 1  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 820    /\ w3a 963    = wceq 1335    e. wcel 2128    =/= wne 2327   class class class wbr 3967  (class class class)co 5827   0cc0 7735   RR*cxr 7914    <_ cle 7916   NNcn 8839   NN0cn0 9096   ZZcz 9173   QQcq 9535   ^cexp 10428    || cdvds 11695   Primecprime 12000    pCnt cpc 12175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4082  ax-sep 4085  ax-nul 4093  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-iinf 4550  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-mulrcl 7834  ax-addcom 7835  ax-mulcom 7836  ax-addass 7837  ax-mulass 7838  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-1rid 7842  ax-0id 7843  ax-rnegex 7844  ax-precex 7845  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-apti 7850  ax-pre-ltadd 7851  ax-pre-mulgt0 7852  ax-pre-mulext 7853  ax-arch 7854  ax-caucvg 7855
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4029  df-mpt 4030  df-tr 4066  df-id 4256  df-po 4259  df-iso 4260  df-iord 4329  df-on 4331  df-ilim 4332  df-suc 4334  df-iom 4553  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-f1 5178  df-fo 5179  df-f1o 5180  df-fv 5181  df-isom 5182  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-1st 6091  df-2nd 6092  df-recs 6255  df-frec 6341  df-1o 6366  df-2o 6367  df-er 6483  df-en 6689  df-sup 6931  df-inf 6932  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-reap 8455  df-ap 8462  df-div 8551  df-inn 8840  df-2 8898  df-3 8899  df-4 8900  df-n0 9097  df-z 9174  df-uz 9446  df-q 9536  df-rp 9568  df-fz 9920  df-fzo 10052  df-fl 10179  df-mod 10232  df-seqfrec 10355  df-exp 10429  df-cj 10754  df-re 10755  df-im 10756  df-rsqrt 10910  df-abs 10911  df-dvds 11696  df-gcd 11843  df-prm 12001  df-pc 12176
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator