ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplr1 GIF version

Theorem simplr1 1034
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simplr1 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜑)

Proof of Theorem simplr1
StepHypRef Expression
1 simpr1 998 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜑)
21adantr 274 1 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  prarloclemlt  7455  prarloclemlo  7456  summodclem2  11345  pcdvdstr  12280  grprcan  12740  restopnb  12975  blsscls2  13287
  Copyright terms: Public domain W3C validator