ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplr1 GIF version

Theorem simplr1 1063
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simplr1 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜑)

Proof of Theorem simplr1
StepHypRef Expression
1 simpr1 1027 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜑)
21adantr 276 1 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  netap  7448  prarloclemlt  7688  prarloclemlo  7689  ccatswrd  11210  summodclem2  11901  pcdvdstr  12858  prdssgrpd  13456  prdsmndd  13489  grprcan  13578  lmodprop2d  14320  lssintclm  14356  psrbaglesuppg  14644  restopnb  14863  blsscls2  15175
  Copyright terms: Public domain W3C validator