ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplr1 GIF version

Theorem simplr1 1039
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simplr1 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜑)

Proof of Theorem simplr1
StepHypRef Expression
1 simpr1 1003 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜑)
21adantr 276 1 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by:  netap  7256  prarloclemlt  7495  prarloclemlo  7496  summodclem2  11393  pcdvdstr  12329  grprcan  12916  lmodprop2d  13444  lssintclm  13477  restopnb  13821  blsscls2  14133
  Copyright terms: Public domain W3C validator