ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sneqrg GIF version

Theorem sneqrg 3788
Description: Closed form of sneqr 3786. (Contributed by Scott Fenton, 1-Apr-2011.)
Assertion
Ref Expression
sneqrg (𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵))

Proof of Theorem sneqrg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 3629 . . . 4 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21eqeq1d 2202 . . 3 (𝑥 = 𝐴 → ({𝑥} = {𝐵} ↔ {𝐴} = {𝐵}))
3 eqeq1 2200 . . 3 (𝑥 = 𝐴 → (𝑥 = 𝐵𝐴 = 𝐵))
42, 3imbi12d 234 . 2 (𝑥 = 𝐴 → (({𝑥} = {𝐵} → 𝑥 = 𝐵) ↔ ({𝐴} = {𝐵} → 𝐴 = 𝐵)))
5 vex 2763 . . 3 𝑥 ∈ V
65sneqr 3786 . 2 ({𝑥} = {𝐵} → 𝑥 = 𝐵)
74, 6vtoclg 2820 1 (𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  {csn 3618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sn 3624
This theorem is referenced by:  sneqbg  3789
  Copyright terms: Public domain W3C validator