ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sneqrg GIF version

Theorem sneqrg 3742
Description: Closed form of sneqr 3740. (Contributed by Scott Fenton, 1-Apr-2011.)
Assertion
Ref Expression
sneqrg (𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵))

Proof of Theorem sneqrg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 3587 . . . 4 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21eqeq1d 2174 . . 3 (𝑥 = 𝐴 → ({𝑥} = {𝐵} ↔ {𝐴} = {𝐵}))
3 eqeq1 2172 . . 3 (𝑥 = 𝐴 → (𝑥 = 𝐵𝐴 = 𝐵))
42, 3imbi12d 233 . 2 (𝑥 = 𝐴 → (({𝑥} = {𝐵} → 𝑥 = 𝐵) ↔ ({𝐴} = {𝐵} → 𝐴 = 𝐵)))
5 vex 2729 . . 3 𝑥 ∈ V
65sneqr 3740 . 2 ({𝑥} = {𝐵} → 𝑥 = 𝐵)
74, 6vtoclg 2786 1 (𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sn 3582
This theorem is referenced by:  sneqbg  3743
  Copyright terms: Public domain W3C validator