| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sneqrg | GIF version | ||
| Description: Closed form of sneqr 3790. (Contributed by Scott Fenton, 1-Apr-2011.) | 
| Ref | Expression | 
|---|---|
| sneqrg | ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sneq 3633 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 2 | 1 | eqeq1d 2205 | . . 3 ⊢ (𝑥 = 𝐴 → ({𝑥} = {𝐵} ↔ {𝐴} = {𝐵})) | 
| 3 | eqeq1 2203 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
| 4 | 2, 3 | imbi12d 234 | . 2 ⊢ (𝑥 = 𝐴 → (({𝑥} = {𝐵} → 𝑥 = 𝐵) ↔ ({𝐴} = {𝐵} → 𝐴 = 𝐵))) | 
| 5 | vex 2766 | . . 3 ⊢ 𝑥 ∈ V | |
| 6 | 5 | sneqr 3790 | . 2 ⊢ ({𝑥} = {𝐵} → 𝑥 = 𝐵) | 
| 7 | 4, 6 | vtoclg 2824 | 1 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 {csn 3622 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sn 3628 | 
| This theorem is referenced by: sneqbg 3793 | 
| Copyright terms: Public domain | W3C validator |