ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sneqrg GIF version

Theorem sneqrg 3764
Description: Closed form of sneqr 3762. (Contributed by Scott Fenton, 1-Apr-2011.)
Assertion
Ref Expression
sneqrg (𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵))

Proof of Theorem sneqrg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 3605 . . . 4 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21eqeq1d 2186 . . 3 (𝑥 = 𝐴 → ({𝑥} = {𝐵} ↔ {𝐴} = {𝐵}))
3 eqeq1 2184 . . 3 (𝑥 = 𝐴 → (𝑥 = 𝐵𝐴 = 𝐵))
42, 3imbi12d 234 . 2 (𝑥 = 𝐴 → (({𝑥} = {𝐵} → 𝑥 = 𝐵) ↔ ({𝐴} = {𝐵} → 𝐴 = 𝐵)))
5 vex 2742 . . 3 𝑥 ∈ V
65sneqr 3762 . 2 ({𝑥} = {𝐵} → 𝑥 = 𝐵)
74, 6vtoclg 2799 1 (𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  {csn 3594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-sn 3600
This theorem is referenced by:  sneqbg  3765
  Copyright terms: Public domain W3C validator