Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sneqrg | GIF version |
Description: Closed form of sneqr 3747. (Contributed by Scott Fenton, 1-Apr-2011.) |
Ref | Expression |
---|---|
sneqrg | ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3594 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
2 | 1 | eqeq1d 2179 | . . 3 ⊢ (𝑥 = 𝐴 → ({𝑥} = {𝐵} ↔ {𝐴} = {𝐵})) |
3 | eqeq1 2177 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
4 | 2, 3 | imbi12d 233 | . 2 ⊢ (𝑥 = 𝐴 → (({𝑥} = {𝐵} → 𝑥 = 𝐵) ↔ ({𝐴} = {𝐵} → 𝐴 = 𝐵))) |
5 | vex 2733 | . . 3 ⊢ 𝑥 ∈ V | |
6 | 5 | sneqr 3747 | . 2 ⊢ ({𝑥} = {𝐵} → 𝑥 = 𝐵) |
7 | 4, 6 | vtoclg 2790 | 1 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 {csn 3583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-sn 3589 |
This theorem is referenced by: sneqbg 3750 |
Copyright terms: Public domain | W3C validator |