![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sneqrg | GIF version |
Description: Closed form of sneqr 3634. (Contributed by Scott Fenton, 1-Apr-2011.) |
Ref | Expression |
---|---|
sneqrg | ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3485 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
2 | 1 | eqeq1d 2108 | . . 3 ⊢ (𝑥 = 𝐴 → ({𝑥} = {𝐵} ↔ {𝐴} = {𝐵})) |
3 | eqeq1 2106 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
4 | 2, 3 | imbi12d 233 | . 2 ⊢ (𝑥 = 𝐴 → (({𝑥} = {𝐵} → 𝑥 = 𝐵) ↔ ({𝐴} = {𝐵} → 𝐴 = 𝐵))) |
5 | vex 2644 | . . 3 ⊢ 𝑥 ∈ V | |
6 | 5 | sneqr 3634 | . 2 ⊢ ({𝑥} = {𝐵} → 𝑥 = 𝐵) |
7 | 4, 6 | vtoclg 2701 | 1 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1299 ∈ wcel 1448 {csn 3474 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 df-sn 3480 |
This theorem is referenced by: sneqbg 3637 |
Copyright terms: Public domain | W3C validator |