ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sneqrg GIF version

Theorem sneqrg 3839
Description: Closed form of sneqr 3837. (Contributed by Scott Fenton, 1-Apr-2011.)
Assertion
Ref Expression
sneqrg (𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵))

Proof of Theorem sneqrg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sneq 3677 . . . 4 (𝑥 = 𝐴 → {𝑥} = {𝐴})
21eqeq1d 2238 . . 3 (𝑥 = 𝐴 → ({𝑥} = {𝐵} ↔ {𝐴} = {𝐵}))
3 eqeq1 2236 . . 3 (𝑥 = 𝐴 → (𝑥 = 𝐵𝐴 = 𝐵))
42, 3imbi12d 234 . 2 (𝑥 = 𝐴 → (({𝑥} = {𝐵} → 𝑥 = 𝐵) ↔ ({𝐴} = {𝐵} → 𝐴 = 𝐵)))
5 vex 2802 . . 3 𝑥 ∈ V
65sneqr 3837 . 2 ({𝑥} = {𝐵} → 𝑥 = 𝐵)
74, 6vtoclg 2861 1 (𝐴𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sn 3672
This theorem is referenced by:  sneqbg  3840
  Copyright terms: Public domain W3C validator