Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sneqrg | GIF version |
Description: Closed form of sneqr 3756. (Contributed by Scott Fenton, 1-Apr-2011.) |
Ref | Expression |
---|---|
sneqrg | ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3600 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
2 | 1 | eqeq1d 2184 | . . 3 ⊢ (𝑥 = 𝐴 → ({𝑥} = {𝐵} ↔ {𝐴} = {𝐵})) |
3 | eqeq1 2182 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
4 | 2, 3 | imbi12d 234 | . 2 ⊢ (𝑥 = 𝐴 → (({𝑥} = {𝐵} → 𝑥 = 𝐵) ↔ ({𝐴} = {𝐵} → 𝐴 = 𝐵))) |
5 | vex 2738 | . . 3 ⊢ 𝑥 ∈ V | |
6 | 5 | sneqr 3756 | . 2 ⊢ ({𝑥} = {𝐵} → 𝑥 = 𝐵) |
7 | 4, 6 | vtoclg 2795 | 1 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 {csn 3589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-sn 3595 |
This theorem is referenced by: sneqbg 3759 |
Copyright terms: Public domain | W3C validator |