Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snsssn | Unicode version |
Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.) |
Ref | Expression |
---|---|
sneqr.1 |
Ref | Expression |
---|---|
snsssn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3131 | . . 3 | |
2 | velsn 3593 | . . . . 5 | |
3 | velsn 3593 | . . . . 5 | |
4 | 2, 3 | imbi12i 238 | . . . 4 |
5 | 4 | albii 1458 | . . 3 |
6 | 1, 5 | bitri 183 | . 2 |
7 | sneqr.1 | . . 3 | |
8 | sbceqal 3006 | . . 3 | |
9 | 7, 8 | ax-mp 5 | . 2 |
10 | 6, 9 | sylbi 120 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1341 wceq 1343 wcel 2136 cvv 2726 wss 3116 csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sbc 2952 df-in 3122 df-ss 3129 df-sn 3582 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |