ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sneqr Unicode version

Theorem sneqr 3761
Description: If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 27-Aug-1993.)
Hypothesis
Ref Expression
sneqr.1  |-  A  e. 
_V
Assertion
Ref Expression
sneqr  |-  ( { A }  =  { B }  ->  A  =  B )

Proof of Theorem sneqr
StepHypRef Expression
1 sneqr.1 . . . 4  |-  A  e. 
_V
21snid 3624 . . 3  |-  A  e. 
{ A }
3 eleq2 2241 . . 3  |-  ( { A }  =  { B }  ->  ( A  e.  { A }  <->  A  e.  { B }
) )
42, 3mpbii 148 . 2  |-  ( { A }  =  { B }  ->  A  e. 
{ B } )
51elsn 3609 . 2  |-  ( A  e.  { B }  <->  A  =  B )
64, 5sylib 122 1  |-  ( { A }  =  { B }  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   _Vcvv 2738   {csn 3593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-sn 3599
This theorem is referenced by:  sneqrg  3763  opth1  4237  cc2lem  7265
  Copyright terms: Public domain W3C validator