ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sneqr Unicode version

Theorem sneqr 3725
Description: If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 27-Aug-1993.)
Hypothesis
Ref Expression
sneqr.1  |-  A  e. 
_V
Assertion
Ref Expression
sneqr  |-  ( { A }  =  { B }  ->  A  =  B )

Proof of Theorem sneqr
StepHypRef Expression
1 sneqr.1 . . . 4  |-  A  e. 
_V
21snid 3592 . . 3  |-  A  e. 
{ A }
3 eleq2 2221 . . 3  |-  ( { A }  =  { B }  ->  ( A  e.  { A }  <->  A  e.  { B }
) )
42, 3mpbii 147 . 2  |-  ( { A }  =  { B }  ->  A  e. 
{ B } )
51elsn 3577 . 2  |-  ( A  e.  { B }  <->  A  =  B )
64, 5sylib 121 1  |-  ( { A }  =  { B }  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1335    e. wcel 2128   _Vcvv 2712   {csn 3561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-sn 3567
This theorem is referenced by:  sneqrg  3727  opth1  4198  cc2lem  7188
  Copyright terms: Public domain W3C validator