| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltrdi | Unicode version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqeltrdi.1 |
|
| eqeltrdi.2 |
|
| Ref | Expression |
|---|---|
| eqeltrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrdi.1 |
. 2
| |
| 2 | eqeltrdi.2 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | eqeltrd 2282 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: eqeltrrdi 2297 snexprc 4230 onsucelsucexmidlem 4577 dcextest 4629 nnpredcl 4671 ovprc 5980 nnmcl 6567 xpsnen 6916 pw1fin 7007 xpfi 7029 snexxph 7052 ctssdclemn0 7212 nninfisollemne 7233 nninfisol 7235 exmidonfinlem 7301 pw1on 7338 indpi 7455 nq0m0r 7569 genpelxp 7624 un0mulcl 9329 znegcl 9403 zeo 9478 eqreznegel 9735 xnegcl 9954 modqid0 10495 q2txmodxeq0 10529 ser0 10678 expcllem 10695 m1expcl2 10706 nn0ltexp2 10854 bcval 10894 bccl 10912 hashinfom 10923 resqrexlemlo 11324 iserge0 11654 sumrbdclem 11688 fsum3cvg 11689 summodclem3 11691 summodclem2a 11692 fisumss 11703 binom 11795 bcxmas 11800 prodf1 11853 prodrbdclem 11882 fproddccvg 11883 prodmodclem2a 11887 fprodntrivap 11895 prodssdc 11900 fprodssdc 11901 gcdval 12280 gcdcl 12287 lcmcl 12394 pcxnn0cl 12633 pcxcl 12634 pcmptcl 12665 infpnlem2 12683 zgz 12696 4sqlem19 12732 znf1o 14413 ssblps 14897 ssbl 14898 xmeter 14908 blssioo 15025 elply 15206 plycj 15233 1sgmprm 15466 lgslem4 15480 lgsne0 15515 2sqlem9 15601 2sqlem10 15602 bj-charfun 15743 012of 15930 2o01f 15931 nninfsellemeqinf 15953 nninffeq 15957 trilpolemclim 15975 iswomni0 15990 |
| Copyright terms: Public domain | W3C validator |