![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeltrdi | Unicode version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eqeltrdi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
eqeltrdi.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqeltrdi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrdi.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqeltrdi.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | eqeltrd 2264 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-4 1520 ax-17 1536 ax-ial 1544 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-cleq 2180 df-clel 2183 |
This theorem is referenced by: eqeltrrdi 2279 snexprc 4198 onsucelsucexmidlem 4540 dcextest 4592 nnpredcl 4634 ovprc 5923 nnmcl 6496 xpsnen 6835 pw1fin 6924 xpfi 6943 snexxph 6963 ctssdclemn0 7123 nninfisollemne 7143 nninfisol 7145 exmidonfinlem 7206 pw1on 7239 indpi 7355 nq0m0r 7469 genpelxp 7524 un0mulcl 9224 znegcl 9298 zeo 9372 eqreznegel 9628 xnegcl 9846 modqid0 10364 q2txmodxeq0 10398 ser0 10528 expcllem 10545 m1expcl2 10556 nn0ltexp2 10703 bcval 10743 bccl 10761 hashinfom 10772 resqrexlemlo 11036 iserge0 11365 sumrbdclem 11399 fsum3cvg 11400 summodclem3 11402 summodclem2a 11403 fisumss 11414 binom 11506 bcxmas 11511 prodf1 11564 prodrbdclem 11593 fproddccvg 11594 prodmodclem2a 11598 fprodntrivap 11606 prodssdc 11611 fprodssdc 11612 gcdval 11974 gcdcl 11981 lcmcl 12086 pcxnn0cl 12324 pcxcl 12325 pcmptcl 12354 infpnlem2 12372 zgz 12385 ssblps 14221 ssbl 14222 xmeter 14232 blssioo 14341 lgslem4 14700 lgsne0 14735 2sqlem9 14767 2sqlem10 14768 bj-charfun 14855 012of 15042 2o01f 15043 nninfsellemeqinf 15062 nninffeq 15066 trilpolemclim 15081 iswomni0 15096 |
Copyright terms: Public domain | W3C validator |