![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeltrdi | Unicode version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eqeltrdi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
eqeltrdi.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqeltrdi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrdi.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqeltrdi.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | eqeltrd 2270 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: eqeltrrdi 2285 snexprc 4215 onsucelsucexmidlem 4561 dcextest 4613 nnpredcl 4655 ovprc 5953 nnmcl 6534 xpsnen 6875 pw1fin 6966 xpfi 6986 snexxph 7009 ctssdclemn0 7169 nninfisollemne 7190 nninfisol 7192 exmidonfinlem 7253 pw1on 7286 indpi 7402 nq0m0r 7516 genpelxp 7571 un0mulcl 9274 znegcl 9348 zeo 9422 eqreznegel 9679 xnegcl 9898 modqid0 10421 q2txmodxeq0 10455 ser0 10604 expcllem 10621 m1expcl2 10632 nn0ltexp2 10780 bcval 10820 bccl 10838 hashinfom 10849 resqrexlemlo 11157 iserge0 11486 sumrbdclem 11520 fsum3cvg 11521 summodclem3 11523 summodclem2a 11524 fisumss 11535 binom 11627 bcxmas 11632 prodf1 11685 prodrbdclem 11714 fproddccvg 11715 prodmodclem2a 11719 fprodntrivap 11727 prodssdc 11732 fprodssdc 11733 gcdval 12096 gcdcl 12103 lcmcl 12210 pcxnn0cl 12448 pcxcl 12449 pcmptcl 12480 infpnlem2 12498 zgz 12511 4sqlem19 12547 znf1o 14139 ssblps 14593 ssbl 14594 xmeter 14604 blssioo 14713 elply 14880 lgslem4 15119 lgsne0 15154 2sqlem9 15211 2sqlem10 15212 bj-charfun 15299 012of 15486 2o01f 15487 nninfsellemeqinf 15506 nninffeq 15510 trilpolemclim 15526 iswomni0 15541 |
Copyright terms: Public domain | W3C validator |