| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqeltrdi | Unicode version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) | 
| Ref | Expression | 
|---|---|
| eqeltrdi.1 | 
 | 
| eqeltrdi.2 | 
 | 
| Ref | Expression | 
|---|---|
| eqeltrdi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqeltrdi.1 | 
. 2
 | |
| 2 | eqeltrdi.2 | 
. . 3
 | |
| 3 | 2 | a1i 9 | 
. 2
 | 
| 4 | 1, 3 | eqeltrd 2273 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 | 
| This theorem is referenced by: eqeltrrdi 2288 snexprc 4219 onsucelsucexmidlem 4565 dcextest 4617 nnpredcl 4659 ovprc 5957 nnmcl 6539 xpsnen 6880 pw1fin 6971 xpfi 6993 snexxph 7016 ctssdclemn0 7176 nninfisollemne 7197 nninfisol 7199 exmidonfinlem 7260 pw1on 7293 indpi 7409 nq0m0r 7523 genpelxp 7578 un0mulcl 9283 znegcl 9357 zeo 9431 eqreznegel 9688 xnegcl 9907 modqid0 10442 q2txmodxeq0 10476 ser0 10625 expcllem 10642 m1expcl2 10653 nn0ltexp2 10801 bcval 10841 bccl 10859 hashinfom 10870 resqrexlemlo 11178 iserge0 11508 sumrbdclem 11542 fsum3cvg 11543 summodclem3 11545 summodclem2a 11546 fisumss 11557 binom 11649 bcxmas 11654 prodf1 11707 prodrbdclem 11736 fproddccvg 11737 prodmodclem2a 11741 fprodntrivap 11749 prodssdc 11754 fprodssdc 11755 gcdval 12126 gcdcl 12133 lcmcl 12240 pcxnn0cl 12479 pcxcl 12480 pcmptcl 12511 infpnlem2 12529 zgz 12542 4sqlem19 12578 znf1o 14207 ssblps 14661 ssbl 14662 xmeter 14672 blssioo 14789 elply 14970 plycj 14997 1sgmprm 15230 lgslem4 15244 lgsne0 15279 2sqlem9 15365 2sqlem10 15366 bj-charfun 15453 012of 15640 2o01f 15641 nninfsellemeqinf 15660 nninffeq 15664 trilpolemclim 15680 iswomni0 15695 | 
| Copyright terms: Public domain | W3C validator |