| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltrdi | Unicode version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqeltrdi.1 |
|
| eqeltrdi.2 |
|
| Ref | Expression |
|---|---|
| eqeltrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrdi.1 |
. 2
| |
| 2 | eqeltrdi.2 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | eqeltrd 2306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: eqeltrrdi 2321 snexprc 4270 onsucelsucexmidlem 4621 dcextest 4673 nnpredcl 4715 ovprc 6037 nnmcl 6627 xpsnen 6980 pw1fin 7072 xpfi 7094 snexxph 7117 ctssdclemn0 7277 nninfisollemne 7298 nninfisol 7300 exmidonfinlem 7371 pw1on 7411 indpi 7529 nq0m0r 7643 genpelxp 7698 un0mulcl 9403 znegcl 9477 zeo 9552 eqreznegel 9809 xnegcl 10028 modqid0 10572 q2txmodxeq0 10606 ser0 10755 expcllem 10772 m1expcl2 10783 nn0ltexp2 10931 bcval 10971 bccl 10989 hashinfom 11000 lswex 11123 pfxclz 11211 pfxwrdsymbg 11222 cats1un 11253 cats1fvn 11296 cats1fvnd 11297 resqrexlemlo 11524 iserge0 11854 sumrbdclem 11888 fsum3cvg 11889 summodclem3 11891 summodclem2a 11892 fisumss 11903 binom 11995 bcxmas 12000 prodf1 12053 prodrbdclem 12082 fproddccvg 12083 prodmodclem2a 12087 fprodntrivap 12095 prodssdc 12100 fprodssdc 12101 gcdval 12480 gcdcl 12487 lcmcl 12594 pcxnn0cl 12833 pcxcl 12834 pcmptcl 12865 infpnlem2 12883 zgz 12896 4sqlem19 12932 znf1o 14615 ssblps 15099 ssbl 15100 xmeter 15110 blssioo 15227 elply 15408 plycj 15435 1sgmprm 15668 lgslem4 15682 lgsne0 15717 2sqlem9 15803 2sqlem10 15804 bj-charfun 16170 012of 16357 2o01f 16358 nninfsellemeqinf 16382 nninffeq 16386 trilpolemclim 16404 iswomni0 16419 |
| Copyright terms: Public domain | W3C validator |