| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltrdi | Unicode version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqeltrdi.1 |
|
| eqeltrdi.2 |
|
| Ref | Expression |
|---|---|
| eqeltrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrdi.1 |
. 2
| |
| 2 | eqeltrdi.2 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | eqeltrd 2282 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: eqeltrrdi 2297 snexprc 4231 onsucelsucexmidlem 4578 dcextest 4630 nnpredcl 4672 ovprc 5982 nnmcl 6569 xpsnen 6918 pw1fin 7009 xpfi 7031 snexxph 7054 ctssdclemn0 7214 nninfisollemne 7235 nninfisol 7237 exmidonfinlem 7303 pw1on 7340 indpi 7457 nq0m0r 7571 genpelxp 7626 un0mulcl 9331 znegcl 9405 zeo 9480 eqreznegel 9737 xnegcl 9956 modqid0 10497 q2txmodxeq0 10531 ser0 10680 expcllem 10697 m1expcl2 10708 nn0ltexp2 10856 bcval 10896 bccl 10914 hashinfom 10925 lswex 11047 pfxwrdsymbg 11144 resqrexlemlo 11357 iserge0 11687 sumrbdclem 11721 fsum3cvg 11722 summodclem3 11724 summodclem2a 11725 fisumss 11736 binom 11828 bcxmas 11833 prodf1 11886 prodrbdclem 11915 fproddccvg 11916 prodmodclem2a 11920 fprodntrivap 11928 prodssdc 11933 fprodssdc 11934 gcdval 12313 gcdcl 12320 lcmcl 12427 pcxnn0cl 12666 pcxcl 12667 pcmptcl 12698 infpnlem2 12716 zgz 12729 4sqlem19 12765 znf1o 14446 ssblps 14930 ssbl 14931 xmeter 14941 blssioo 15058 elply 15239 plycj 15266 1sgmprm 15499 lgslem4 15513 lgsne0 15548 2sqlem9 15634 2sqlem10 15635 bj-charfun 15780 012of 15967 2o01f 15968 nninfsellemeqinf 15990 nninffeq 15994 trilpolemclim 16012 iswomni0 16027 |
| Copyright terms: Public domain | W3C validator |