| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltrdi | Unicode version | ||
| Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqeltrdi.1 |
|
| eqeltrdi.2 |
|
| Ref | Expression |
|---|---|
| eqeltrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrdi.1 |
. 2
| |
| 2 | eqeltrdi.2 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | eqeltrd 2284 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-clel 2203 |
| This theorem is referenced by: eqeltrrdi 2299 snexprc 4246 onsucelsucexmidlem 4595 dcextest 4647 nnpredcl 4689 ovprc 6003 nnmcl 6590 xpsnen 6941 pw1fin 7033 xpfi 7055 snexxph 7078 ctssdclemn0 7238 nninfisollemne 7259 nninfisol 7261 exmidonfinlem 7332 pw1on 7372 indpi 7490 nq0m0r 7604 genpelxp 7659 un0mulcl 9364 znegcl 9438 zeo 9513 eqreznegel 9770 xnegcl 9989 modqid0 10532 q2txmodxeq0 10566 ser0 10715 expcllem 10732 m1expcl2 10743 nn0ltexp2 10891 bcval 10931 bccl 10949 hashinfom 10960 lswex 11082 pfxclz 11170 pfxwrdsymbg 11181 cats1un 11212 resqrexlemlo 11439 iserge0 11769 sumrbdclem 11803 fsum3cvg 11804 summodclem3 11806 summodclem2a 11807 fisumss 11818 binom 11910 bcxmas 11915 prodf1 11968 prodrbdclem 11997 fproddccvg 11998 prodmodclem2a 12002 fprodntrivap 12010 prodssdc 12015 fprodssdc 12016 gcdval 12395 gcdcl 12402 lcmcl 12509 pcxnn0cl 12748 pcxcl 12749 pcmptcl 12780 infpnlem2 12798 zgz 12811 4sqlem19 12847 znf1o 14528 ssblps 15012 ssbl 15013 xmeter 15023 blssioo 15140 elply 15321 plycj 15348 1sgmprm 15581 lgslem4 15595 lgsne0 15630 2sqlem9 15716 2sqlem10 15717 bj-charfun 15942 012of 16130 2o01f 16131 nninfsellemeqinf 16155 nninffeq 16159 trilpolemclim 16177 iswomni0 16192 |
| Copyright terms: Public domain | W3C validator |