ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snexprc GIF version

Theorem snexprc 4238
Description: A singleton whose element is a proper class is a set. The ¬ 𝐴 ∈ V case of Theorem 7.12 of [Quine] p. 51, proved using only Extensionality, Power Set, and Separation. Replacement is not needed. (Contributed by Jim Kingdon, 1-Sep-2018.)
Assertion
Ref Expression
snexprc 𝐴 ∈ V → {𝐴} ∈ V)

Proof of Theorem snexprc
StepHypRef Expression
1 snprc 3703 . . 3 𝐴 ∈ V ↔ {𝐴} = ∅)
21biimpi 120 . 2 𝐴 ∈ V → {𝐴} = ∅)
3 0ex 4179 . 2 ∅ ∈ V
42, 3eqeltrdi 2297 1 𝐴 ∈ V → {𝐴} ∈ V)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1373  wcel 2177  Vcvv 2773  c0 3464  {csn 3638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-nul 4178
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3172  df-nul 3465  df-sn 3644
This theorem is referenced by:  notnotsnex  4239
  Copyright terms: Public domain W3C validator