ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snexprc GIF version

Theorem snexprc 4165
Description: A singleton whose element is a proper class is a set. The ¬ 𝐴 ∈ V case of Theorem 7.12 of [Quine] p. 51, proved using only Extensionality, Power Set, and Separation. Replacement is not needed. (Contributed by Jim Kingdon, 1-Sep-2018.)
Assertion
Ref Expression
snexprc 𝐴 ∈ V → {𝐴} ∈ V)

Proof of Theorem snexprc
StepHypRef Expression
1 snprc 3641 . . 3 𝐴 ∈ V ↔ {𝐴} = ∅)
21biimpi 119 . 2 𝐴 ∈ V → {𝐴} = ∅)
3 0ex 4109 . 2 ∅ ∈ V
42, 3eqeltrdi 2257 1 𝐴 ∈ V → {𝐴} ∈ V)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1343  wcel 2136  Vcvv 2726  c0 3409  {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-nul 4108
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-nul 3410  df-sn 3582
This theorem is referenced by:  notnotsnex  4166
  Copyright terms: Public domain W3C validator