![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snexprc | GIF version |
Description: A singleton whose element is a proper class is a set. The ¬ 𝐴 ∈ V case of Theorem 7.12 of [Quine] p. 51, proved using only Extensionality, Power Set, and Separation. Replacement is not needed. (Contributed by Jim Kingdon, 1-Sep-2018.) |
Ref | Expression |
---|---|
snexprc | ⊢ (¬ 𝐴 ∈ V → {𝐴} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snprc 3659 | . . 3 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
2 | 1 | biimpi 120 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
3 | 0ex 4132 | . 2 ⊢ ∅ ∈ V | |
4 | 2, 3 | eqeltrdi 2268 | 1 ⊢ (¬ 𝐴 ∈ V → {𝐴} ∈ V) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1353 ∈ wcel 2148 Vcvv 2739 ∅c0 3424 {csn 3594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-nul 4131 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-dif 3133 df-nul 3425 df-sn 3600 |
This theorem is referenced by: notnotsnex 4189 |
Copyright terms: Public domain | W3C validator |