Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snex | Unicode version |
Description: A singleton whose element exists is a set. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
snex.1 |
Ref | Expression |
---|---|
snex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex.1 | . 2 | |
2 | snexg 4168 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2141 cvv 2730 csn 3581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 |
This theorem is referenced by: snelpw 4196 rext 4198 sspwb 4199 intid 4207 euabex 4208 mss 4209 exss 4210 opi1 4215 opeqsn 4235 opeqpr 4236 uniop 4238 snnex 4431 op1stb 4461 dtruex 4541 relop 4759 funopg 5230 fo1st 6133 fo2nd 6134 mapsn 6664 mapsnconst 6668 mapsncnv 6669 mapsnf1o2 6670 elixpsn 6709 ixpsnf1o 6710 ensn1 6770 mapsnen 6785 xpsnen 6795 endisj 6798 xpcomco 6800 xpassen 6804 phplem2 6827 findcard2 6863 findcard2s 6864 ac6sfi 6872 xpfi 6903 djuex 7016 0ct 7080 finomni 7112 exmidfodomrlemim 7165 djuassen 7181 cc2lem 7215 nn0ex 9128 fxnn0nninf 10381 inftonninf 10384 hashxp 10748 reldvg 13401 |
Copyright terms: Public domain | W3C validator |