| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snex | Unicode version | ||
| Description: A singleton whose element exists is a set. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| snex.1 |
|
| Ref | Expression |
|---|---|
| snex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex.1 |
. 2
| |
| 2 | snexg 4229 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 |
| This theorem is referenced by: snelpw 4258 rext 4260 sspwb 4261 intid 4269 euabex 4270 mss 4271 exss 4272 opi1 4277 opeqsn 4298 opeqpr 4299 uniop 4301 snnex 4496 op1stb 4526 dtruex 4608 relop 4829 funopg 5306 funopsn 5764 fo1st 6245 fo2nd 6246 mapsn 6779 mapsnconst 6783 mapsncnv 6784 mapsnf1o2 6785 elixpsn 6824 ixpsnf1o 6825 ensn1 6890 mapsnen 6905 xpsnen 6918 endisj 6921 xpcomco 6923 xpassen 6927 phplem2 6952 findcard2 6988 findcard2s 6989 ac6sfi 6997 xpfi 7031 djuex 7147 0ct 7211 finomni 7244 exmidfodomrlemim 7311 djuassen 7331 cc2lem 7380 nn0ex 9303 xnn0nnen 10584 fxnn0nninf 10586 inftonninf 10589 hashxp 10973 nninfct 12395 fngsum 13253 znval 14431 fnpsr 14462 reldvg 15184 plyval 15237 elply2 15240 plyss 15243 plyco 15264 plycj 15266 |
| Copyright terms: Public domain | W3C validator |