![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snex | Unicode version |
Description: A singleton whose element exists is a set. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
snex.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
snex |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | snexg 4040 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-v 2635 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 |
This theorem is referenced by: snelpw 4064 rext 4066 sspwb 4067 intid 4075 euabex 4076 mss 4077 exss 4078 opi1 4083 opeqsn 4103 opeqpr 4104 uniop 4106 snnex 4298 op1stb 4328 dtruex 4403 relop 4617 funopg 5082 fo1st 5966 fo2nd 5967 mapsn 6487 mapsnconst 6491 mapsncnv 6492 mapsnf1o2 6493 elixpsn 6532 ixpsnf1o 6533 ensn1 6593 mapsnen 6608 xpsnen 6617 endisj 6620 xpcomco 6622 xpassen 6626 phplem2 6649 findcard2 6685 findcard2s 6686 ac6sfi 6694 xpfi 6720 djuex 6816 0ct 6869 finomni 6883 exmidfodomrlemim 6924 nn0ex 8777 fxnn0nninf 9993 inftonninf 9996 hashxp 10349 |
Copyright terms: Public domain | W3C validator |