![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snex | Unicode version |
Description: A singleton whose element exists is a set. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
snex.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
snex |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | snexg 4214 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 |
This theorem is referenced by: snelpw 4243 rext 4245 sspwb 4246 intid 4254 euabex 4255 mss 4256 exss 4257 opi1 4262 opeqsn 4282 opeqpr 4283 uniop 4285 snnex 4480 op1stb 4510 dtruex 4592 relop 4813 funopg 5289 fo1st 6212 fo2nd 6213 mapsn 6746 mapsnconst 6750 mapsncnv 6751 mapsnf1o2 6752 elixpsn 6791 ixpsnf1o 6792 ensn1 6852 mapsnen 6867 xpsnen 6877 endisj 6880 xpcomco 6882 xpassen 6886 phplem2 6911 findcard2 6947 findcard2s 6948 ac6sfi 6956 xpfi 6988 djuex 7104 0ct 7168 finomni 7201 exmidfodomrlemim 7263 djuassen 7279 cc2lem 7328 nn0ex 9249 xnn0nnen 10511 fxnn0nninf 10513 inftonninf 10516 hashxp 10900 nninfct 12181 fngsum 12974 znval 14135 fnpsr 14164 reldvg 14858 plyval 14911 elply2 14914 plyss 14917 plyco 14937 plycj 14939 |
Copyright terms: Public domain | W3C validator |