| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snex | Unicode version | ||
| Description: A singleton whose element exists is a set. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| snex.1 |
|
| Ref | Expression |
|---|---|
| snex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex.1 |
. 2
| |
| 2 | snexg 4268 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 |
| This theorem is referenced by: snelpw 4298 rext 4301 sspwb 4302 intid 4310 euabex 4311 mss 4312 exss 4313 opi1 4318 opeqsn 4339 opeqpr 4340 uniop 4342 snnex 4539 op1stb 4569 dtruex 4651 relop 4872 funopg 5352 funopsn 5817 fo1st 6303 fo2nd 6304 mapsn 6837 mapsnconst 6841 mapsncnv 6842 mapsnf1o2 6843 elixpsn 6882 ixpsnf1o 6883 ensn1 6948 mapsnen 6964 dom1o 6977 xpsnen 6980 endisj 6983 xpcomco 6985 xpassen 6989 phplem2 7014 findcard2 7051 findcard2s 7052 ac6sfi 7060 xpfi 7094 djuex 7210 0ct 7274 finomni 7307 exmidfodomrlemim 7379 djuassen 7399 cc2lem 7452 nn0ex 9375 xnn0nnen 10659 fxnn0nninf 10661 inftonninf 10664 hashxp 11048 nninfct 12562 fngsum 13421 znval 14600 fnpsr 14631 reldvg 15353 plyval 15406 elply2 15409 plyss 15412 plyco 15433 plycj 15435 |
| Copyright terms: Public domain | W3C validator |