![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snex | Unicode version |
Description: A singleton whose element exists is a set. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
snex.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
snex |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | snexg 4213 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 |
This theorem is referenced by: snelpw 4242 rext 4244 sspwb 4245 intid 4253 euabex 4254 mss 4255 exss 4256 opi1 4261 opeqsn 4281 opeqpr 4282 uniop 4284 snnex 4479 op1stb 4509 dtruex 4591 relop 4812 funopg 5288 fo1st 6210 fo2nd 6211 mapsn 6744 mapsnconst 6748 mapsncnv 6749 mapsnf1o2 6750 elixpsn 6789 ixpsnf1o 6790 ensn1 6850 mapsnen 6865 xpsnen 6875 endisj 6878 xpcomco 6880 xpassen 6884 phplem2 6909 findcard2 6945 findcard2s 6946 ac6sfi 6954 xpfi 6986 djuex 7102 0ct 7166 finomni 7199 exmidfodomrlemim 7261 djuassen 7277 cc2lem 7326 nn0ex 9246 xnn0nnen 10508 fxnn0nninf 10510 inftonninf 10513 hashxp 10897 nninfct 12178 fngsum 12971 znval 14124 fnpsr 14153 reldvg 14833 plyval 14878 elply2 14881 plyss 14884 |
Copyright terms: Public domain | W3C validator |