![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snex | Unicode version |
Description: A singleton whose element exists is a set. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
snex.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
snex |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | snexg 4185 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 |
This theorem is referenced by: snelpw 4214 rext 4216 sspwb 4217 intid 4225 euabex 4226 mss 4227 exss 4228 opi1 4233 opeqsn 4253 opeqpr 4254 uniop 4256 snnex 4449 op1stb 4479 dtruex 4559 relop 4778 funopg 5251 fo1st 6158 fo2nd 6159 mapsn 6690 mapsnconst 6694 mapsncnv 6695 mapsnf1o2 6696 elixpsn 6735 ixpsnf1o 6736 ensn1 6796 mapsnen 6811 xpsnen 6821 endisj 6824 xpcomco 6826 xpassen 6830 phplem2 6853 findcard2 6889 findcard2s 6890 ac6sfi 6898 xpfi 6929 djuex 7042 0ct 7106 finomni 7138 exmidfodomrlemim 7200 djuassen 7216 cc2lem 7265 nn0ex 9182 fxnn0nninf 10438 inftonninf 10441 hashxp 10806 reldvg 14151 |
Copyright terms: Public domain | W3C validator |