| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > snex | Unicode version | ||
| Description: A singleton whose element exists is a set. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) | 
| Ref | Expression | 
|---|---|
| snex.1 | 
 | 
| Ref | Expression | 
|---|---|
| snex | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | snex.1 | 
. 2
 | |
| 2 | snexg 4217 | 
. 2
 | |
| 3 | 1, 2 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 | 
| This theorem is referenced by: snelpw 4246 rext 4248 sspwb 4249 intid 4257 euabex 4258 mss 4259 exss 4260 opi1 4265 opeqsn 4285 opeqpr 4286 uniop 4288 snnex 4483 op1stb 4513 dtruex 4595 relop 4816 funopg 5292 fo1st 6215 fo2nd 6216 mapsn 6749 mapsnconst 6753 mapsncnv 6754 mapsnf1o2 6755 elixpsn 6794 ixpsnf1o 6795 ensn1 6855 mapsnen 6870 xpsnen 6880 endisj 6883 xpcomco 6885 xpassen 6889 phplem2 6914 findcard2 6950 findcard2s 6951 ac6sfi 6959 xpfi 6993 djuex 7109 0ct 7173 finomni 7206 exmidfodomrlemim 7268 djuassen 7284 cc2lem 7333 nn0ex 9255 xnn0nnen 10529 fxnn0nninf 10531 inftonninf 10534 hashxp 10918 nninfct 12208 fngsum 13031 znval 14192 fnpsr 14221 reldvg 14915 plyval 14968 elply2 14971 plyss 14974 plyco 14995 plycj 14997 | 
| Copyright terms: Public domain | W3C validator |