| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snex | Unicode version | ||
| Description: A singleton whose element exists is a set. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| snex.1 |
|
| Ref | Expression |
|---|---|
| snex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex.1 |
. 2
| |
| 2 | snexg 4244 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 |
| This theorem is referenced by: snelpw 4274 rext 4277 sspwb 4278 intid 4286 euabex 4287 mss 4288 exss 4289 opi1 4294 opeqsn 4315 opeqpr 4316 uniop 4318 snnex 4513 op1stb 4543 dtruex 4625 relop 4846 funopg 5324 funopsn 5785 fo1st 6266 fo2nd 6267 mapsn 6800 mapsnconst 6804 mapsncnv 6805 mapsnf1o2 6806 elixpsn 6845 ixpsnf1o 6846 ensn1 6911 mapsnen 6927 xpsnen 6941 endisj 6944 xpcomco 6946 xpassen 6950 phplem2 6975 findcard2 7012 findcard2s 7013 ac6sfi 7021 xpfi 7055 djuex 7171 0ct 7235 finomni 7268 exmidfodomrlemim 7340 djuassen 7360 cc2lem 7413 nn0ex 9336 xnn0nnen 10619 fxnn0nninf 10621 inftonninf 10624 hashxp 11008 nninfct 12477 fngsum 13335 znval 14513 fnpsr 14544 reldvg 15266 plyval 15319 elply2 15322 plyss 15325 plyco 15346 plycj 15348 dom1o 16128 |
| Copyright terms: Public domain | W3C validator |