| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snex | Unicode version | ||
| Description: A singleton whose element exists is a set. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
| Ref | Expression |
|---|---|
| snex.1 |
|
| Ref | Expression |
|---|---|
| snex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex.1 |
. 2
| |
| 2 | snexg 4228 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 |
| This theorem is referenced by: snelpw 4257 rext 4259 sspwb 4260 intid 4268 euabex 4269 mss 4270 exss 4271 opi1 4276 opeqsn 4297 opeqpr 4298 uniop 4300 snnex 4495 op1stb 4525 dtruex 4607 relop 4828 funopg 5305 funopsn 5762 fo1st 6243 fo2nd 6244 mapsn 6777 mapsnconst 6781 mapsncnv 6782 mapsnf1o2 6783 elixpsn 6822 ixpsnf1o 6823 ensn1 6888 mapsnen 6903 xpsnen 6916 endisj 6919 xpcomco 6921 xpassen 6925 phplem2 6950 findcard2 6986 findcard2s 6987 ac6sfi 6995 xpfi 7029 djuex 7145 0ct 7209 finomni 7242 exmidfodomrlemim 7309 djuassen 7329 cc2lem 7378 nn0ex 9301 xnn0nnen 10582 fxnn0nninf 10584 inftonninf 10587 hashxp 10971 nninfct 12362 fngsum 13220 znval 14398 fnpsr 14429 reldvg 15151 plyval 15204 elply2 15207 plyss 15210 plyco 15231 plycj 15233 |
| Copyright terms: Public domain | W3C validator |