ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snnzg GIF version

Theorem snnzg 3711
Description: The singleton of a set is not empty. (Contributed by NM, 14-Dec-2008.)
Assertion
Ref Expression
snnzg (𝐴𝑉 → {𝐴} ≠ ∅)

Proof of Theorem snnzg
StepHypRef Expression
1 snidg 3623 . 2 (𝐴𝑉𝐴 ∈ {𝐴})
2 ne0i 3431 . 2 (𝐴 ∈ {𝐴} → {𝐴} ≠ ∅)
31, 2syl 14 1 (𝐴𝑉 → {𝐴} ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2148  wne 2347  c0 3424  {csn 3594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-v 2741  df-dif 3133  df-nul 3425  df-sn 3600
This theorem is referenced by:  snnz  3713  0nelop  4250
  Copyright terms: Public domain W3C validator