Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  snmg Unicode version

Theorem snmg 3641
 Description: The singleton of a set is inhabited. (Contributed by Jim Kingdon, 11-Aug-2018.)
Assertion
Ref Expression
snmg
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem snmg
StepHypRef Expression
1 snidg 3554 . 2
2 elex2 2702 . 2
31, 2syl 14 1
 Colors of variables: wff set class Syntax hints:   wi 4  wex 1468   wcel 1480  csn 3527 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-sn 3533 This theorem is referenced by:  snm  3643  prmg  3644  exmidsssnc  4126  xpimasn  4987  1stconst  6118  2ndconst  6119
 Copyright terms: Public domain W3C validator