ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snsstp3 Unicode version

Theorem snsstp3 3774
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.)
Assertion
Ref Expression
snsstp3  |-  { C }  C_  { A ,  B ,  C }

Proof of Theorem snsstp3
StepHypRef Expression
1 ssun2 3327 . 2  |-  { C }  C_  ( { A ,  B }  u.  { C } )
2 df-tp 3630 . 2  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
31, 2sseqtrri 3218 1  |-  { C }  C_  { A ,  B ,  C }
Colors of variables: wff set class
Syntax hints:    u. cun 3155    C_ wss 3157   {csn 3622   {cpr 3623   {ctp 3624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-tp 3630
This theorem is referenced by:  sstpr  3787  mpocnfldmul  14119  cnfldds  14124
  Copyright terms: Public domain W3C validator