ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snsstp3 Unicode version

Theorem snsstp3 3820
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.)
Assertion
Ref Expression
snsstp3  |-  { C }  C_  { A ,  B ,  C }

Proof of Theorem snsstp3
StepHypRef Expression
1 ssun2 3368 . 2  |-  { C }  C_  ( { A ,  B }  u.  { C } )
2 df-tp 3674 . 2  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
31, 2sseqtrri 3259 1  |-  { C }  C_  { A ,  B ,  C }
Colors of variables: wff set class
Syntax hints:    u. cun 3195    C_ wss 3197   {csn 3666   {cpr 3667   {ctp 3668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-tp 3674
This theorem is referenced by:  sstpr  3835  prdsmulr  13311  mpocnfldmul  14527  cnfldds  14532
  Copyright terms: Public domain W3C validator