ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstpr Unicode version

Theorem sstpr 3736
Description: The subsets of a triple. (Contributed by Jim Kingdon, 11-Aug-2018.)
Assertion
Ref Expression
sstpr  |-  ( ( ( ( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C }
) )  \/  (
( A  =  { D }  \/  A  =  { B ,  D } )  \/  ( A  =  { C ,  D }  \/  A  =  { B ,  C ,  D } ) ) )  ->  A  C_  { B ,  C ,  D }
)

Proof of Theorem sstpr
StepHypRef Expression
1 ssprr 3735 . . 3  |-  ( ( ( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C }
) )  ->  A  C_ 
{ B ,  C } )
2 prsstp12 3725 . . 3  |-  { B ,  C }  C_  { B ,  C ,  D }
31, 2sstrdi 3153 . 2  |-  ( ( ( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C }
) )  ->  A  C_ 
{ B ,  C ,  D } )
4 snsstp3 3724 . . . . 5  |-  { D }  C_  { B ,  C ,  D }
5 sseq1 3164 . . . . 5  |-  ( A  =  { D }  ->  ( A  C_  { B ,  C ,  D }  <->  { D }  C_  { B ,  C ,  D }
) )
64, 5mpbiri 167 . . . 4  |-  ( A  =  { D }  ->  A  C_  { B ,  C ,  D }
)
7 prsstp13 3726 . . . . 5  |-  { B ,  D }  C_  { B ,  C ,  D }
8 sseq1 3164 . . . . 5  |-  ( A  =  { B ,  D }  ->  ( A 
C_  { B ,  C ,  D }  <->  { B ,  D }  C_ 
{ B ,  C ,  D } ) )
97, 8mpbiri 167 . . . 4  |-  ( A  =  { B ,  D }  ->  A  C_  { B ,  C ,  D } )
106, 9jaoi 706 . . 3  |-  ( ( A  =  { D }  \/  A  =  { B ,  D }
)  ->  A  C_  { B ,  C ,  D }
)
11 prsstp23 3727 . . . . 5  |-  { C ,  D }  C_  { B ,  C ,  D }
12 sseq1 3164 . . . . 5  |-  ( A  =  { C ,  D }  ->  ( A 
C_  { B ,  C ,  D }  <->  { C ,  D }  C_ 
{ B ,  C ,  D } ) )
1311, 12mpbiri 167 . . . 4  |-  ( A  =  { C ,  D }  ->  A  C_  { B ,  C ,  D } )
14 eqimss 3195 . . . 4  |-  ( A  =  { B ,  C ,  D }  ->  A  C_  { B ,  C ,  D }
)
1513, 14jaoi 706 . . 3  |-  ( ( A  =  { C ,  D }  \/  A  =  { B ,  C ,  D } )  ->  A  C_  { B ,  C ,  D }
)
1610, 15jaoi 706 . 2  |-  ( ( ( A  =  { D }  \/  A  =  { B ,  D } )  \/  ( A  =  { C ,  D }  \/  A  =  { B ,  C ,  D } ) )  ->  A  C_  { B ,  C ,  D }
)
173, 16jaoi 706 1  |-  ( ( ( ( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C }
) )  \/  (
( A  =  { D }  \/  A  =  { B ,  D } )  \/  ( A  =  { C ,  D }  \/  A  =  { B ,  C ,  D } ) ) )  ->  A  C_  { B ,  C ,  D }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 698    = wceq 1343    C_ wss 3115   (/)c0 3408   {csn 3575   {cpr 3576   {ctp 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3or 969  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-v 2727  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-sn 3581  df-pr 3582  df-tp 3583
This theorem is referenced by:  pwtpss  3785
  Copyright terms: Public domain W3C validator