ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstpr Unicode version

Theorem sstpr 3692
Description: The subsets of a triple. (Contributed by Jim Kingdon, 11-Aug-2018.)
Assertion
Ref Expression
sstpr  |-  ( ( ( ( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C }
) )  \/  (
( A  =  { D }  \/  A  =  { B ,  D } )  \/  ( A  =  { C ,  D }  \/  A  =  { B ,  C ,  D } ) ) )  ->  A  C_  { B ,  C ,  D }
)

Proof of Theorem sstpr
StepHypRef Expression
1 ssprr 3691 . . 3  |-  ( ( ( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C }
) )  ->  A  C_ 
{ B ,  C } )
2 prsstp12 3681 . . 3  |-  { B ,  C }  C_  { B ,  C ,  D }
31, 2sstrdi 3114 . 2  |-  ( ( ( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C }
) )  ->  A  C_ 
{ B ,  C ,  D } )
4 snsstp3 3680 . . . . 5  |-  { D }  C_  { B ,  C ,  D }
5 sseq1 3125 . . . . 5  |-  ( A  =  { D }  ->  ( A  C_  { B ,  C ,  D }  <->  { D }  C_  { B ,  C ,  D }
) )
64, 5mpbiri 167 . . . 4  |-  ( A  =  { D }  ->  A  C_  { B ,  C ,  D }
)
7 prsstp13 3682 . . . . 5  |-  { B ,  D }  C_  { B ,  C ,  D }
8 sseq1 3125 . . . . 5  |-  ( A  =  { B ,  D }  ->  ( A 
C_  { B ,  C ,  D }  <->  { B ,  D }  C_ 
{ B ,  C ,  D } ) )
97, 8mpbiri 167 . . . 4  |-  ( A  =  { B ,  D }  ->  A  C_  { B ,  C ,  D } )
106, 9jaoi 706 . . 3  |-  ( ( A  =  { D }  \/  A  =  { B ,  D }
)  ->  A  C_  { B ,  C ,  D }
)
11 prsstp23 3683 . . . . 5  |-  { C ,  D }  C_  { B ,  C ,  D }
12 sseq1 3125 . . . . 5  |-  ( A  =  { C ,  D }  ->  ( A 
C_  { B ,  C ,  D }  <->  { C ,  D }  C_ 
{ B ,  C ,  D } ) )
1311, 12mpbiri 167 . . . 4  |-  ( A  =  { C ,  D }  ->  A  C_  { B ,  C ,  D } )
14 eqimss 3156 . . . 4  |-  ( A  =  { B ,  C ,  D }  ->  A  C_  { B ,  C ,  D }
)
1513, 14jaoi 706 . . 3  |-  ( ( A  =  { C ,  D }  \/  A  =  { B ,  C ,  D } )  ->  A  C_  { B ,  C ,  D }
)
1610, 15jaoi 706 . 2  |-  ( ( ( A  =  { D }  \/  A  =  { B ,  D } )  \/  ( A  =  { C ,  D }  \/  A  =  { B ,  C ,  D } ) )  ->  A  C_  { B ,  C ,  D }
)
173, 16jaoi 706 1  |-  ( ( ( ( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C }
) )  \/  (
( A  =  { D }  \/  A  =  { B ,  D } )  \/  ( A  =  { C ,  D }  \/  A  =  { B ,  C ,  D } ) ) )  ->  A  C_  { B ,  C ,  D }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 698    = wceq 1332    C_ wss 3076   (/)c0 3368   {csn 3532   {cpr 3533   {ctp 3534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-3or 964  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-sn 3538  df-pr 3539  df-tp 3540
This theorem is referenced by:  pwtpss  3741
  Copyright terms: Public domain W3C validator