ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstpr Unicode version

Theorem sstpr 3835
Description: The subsets of a triple. (Contributed by Jim Kingdon, 11-Aug-2018.)
Assertion
Ref Expression
sstpr  |-  ( ( ( ( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C }
) )  \/  (
( A  =  { D }  \/  A  =  { B ,  D } )  \/  ( A  =  { C ,  D }  \/  A  =  { B ,  C ,  D } ) ) )  ->  A  C_  { B ,  C ,  D }
)

Proof of Theorem sstpr
StepHypRef Expression
1 ssprr 3834 . . 3  |-  ( ( ( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C }
) )  ->  A  C_ 
{ B ,  C } )
2 prsstp12 3821 . . 3  |-  { B ,  C }  C_  { B ,  C ,  D }
31, 2sstrdi 3236 . 2  |-  ( ( ( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C }
) )  ->  A  C_ 
{ B ,  C ,  D } )
4 snsstp3 3820 . . . . 5  |-  { D }  C_  { B ,  C ,  D }
5 sseq1 3247 . . . . 5  |-  ( A  =  { D }  ->  ( A  C_  { B ,  C ,  D }  <->  { D }  C_  { B ,  C ,  D }
) )
64, 5mpbiri 168 . . . 4  |-  ( A  =  { D }  ->  A  C_  { B ,  C ,  D }
)
7 prsstp13 3822 . . . . 5  |-  { B ,  D }  C_  { B ,  C ,  D }
8 sseq1 3247 . . . . 5  |-  ( A  =  { B ,  D }  ->  ( A 
C_  { B ,  C ,  D }  <->  { B ,  D }  C_ 
{ B ,  C ,  D } ) )
97, 8mpbiri 168 . . . 4  |-  ( A  =  { B ,  D }  ->  A  C_  { B ,  C ,  D } )
106, 9jaoi 721 . . 3  |-  ( ( A  =  { D }  \/  A  =  { B ,  D }
)  ->  A  C_  { B ,  C ,  D }
)
11 prsstp23 3823 . . . . 5  |-  { C ,  D }  C_  { B ,  C ,  D }
12 sseq1 3247 . . . . 5  |-  ( A  =  { C ,  D }  ->  ( A 
C_  { B ,  C ,  D }  <->  { C ,  D }  C_ 
{ B ,  C ,  D } ) )
1311, 12mpbiri 168 . . . 4  |-  ( A  =  { C ,  D }  ->  A  C_  { B ,  C ,  D } )
14 eqimss 3278 . . . 4  |-  ( A  =  { B ,  C ,  D }  ->  A  C_  { B ,  C ,  D }
)
1513, 14jaoi 721 . . 3  |-  ( ( A  =  { C ,  D }  \/  A  =  { B ,  C ,  D } )  ->  A  C_  { B ,  C ,  D }
)
1610, 15jaoi 721 . 2  |-  ( ( ( A  =  { D }  \/  A  =  { B ,  D } )  \/  ( A  =  { C ,  D }  \/  A  =  { B ,  C ,  D } ) )  ->  A  C_  { B ,  C ,  D }
)
173, 16jaoi 721 1  |-  ( ( ( ( A  =  (/)  \/  A  =  { B } )  \/  ( A  =  { C }  \/  A  =  { B ,  C }
) )  \/  (
( A  =  { D }  \/  A  =  { B ,  D } )  \/  ( A  =  { C ,  D }  \/  A  =  { B ,  C ,  D } ) ) )  ->  A  C_  { B ,  C ,  D }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 713    = wceq 1395    C_ wss 3197   (/)c0 3491   {csn 3666   {cpr 3667   {ctp 3668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-sn 3672  df-pr 3673  df-tp 3674
This theorem is referenced by:  pwtpss  3885
  Copyright terms: Public domain W3C validator