ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snsstp2 Unicode version

Theorem snsstp2 3723
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.)
Assertion
Ref Expression
snsstp2  |-  { B }  C_  { A ,  B ,  C }

Proof of Theorem snsstp2
StepHypRef Expression
1 snsspr2 3721 . . 3  |-  { B }  C_  { A ,  B }
2 ssun1 3284 . . 3  |-  { A ,  B }  C_  ( { A ,  B }  u.  { C } )
31, 2sstri 3150 . 2  |-  { B }  C_  ( { A ,  B }  u.  { C } )
4 df-tp 3583 . 2  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
53, 4sseqtrri 3176 1  |-  { B }  C_  { A ,  B ,  C }
Colors of variables: wff set class
Syntax hints:    u. cun 3113    C_ wss 3115   {csn 3575   {cpr 3576   {ctp 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-v 2727  df-un 3119  df-in 3121  df-ss 3128  df-pr 3582  df-tp 3583
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator