ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snsstp2 Unicode version

Theorem snsstp2 3769
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.)
Assertion
Ref Expression
snsstp2  |-  { B }  C_  { A ,  B ,  C }

Proof of Theorem snsstp2
StepHypRef Expression
1 snsspr2 3767 . . 3  |-  { B }  C_  { A ,  B }
2 ssun1 3322 . . 3  |-  { A ,  B }  C_  ( { A ,  B }  u.  { C } )
31, 2sstri 3188 . 2  |-  { B }  C_  ( { A ,  B }  u.  { C } )
4 df-tp 3626 . 2  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
53, 4sseqtrri 3214 1  |-  { B }  C_  { A ,  B ,  C }
Colors of variables: wff set class
Syntax hints:    u. cun 3151    C_ wss 3153   {csn 3618   {cpr 3619   {ctp 3620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pr 3625  df-tp 3626
This theorem is referenced by:  cnfldadd  14052  psrplusgg  14162
  Copyright terms: Public domain W3C validator