ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snsstp2 Unicode version

Theorem snsstp2 3709
Description: A singleton is a subset of an unordered triple containing its member. (Contributed by NM, 9-Oct-2013.)
Assertion
Ref Expression
snsstp2  |-  { B }  C_  { A ,  B ,  C }

Proof of Theorem snsstp2
StepHypRef Expression
1 snsspr2 3707 . . 3  |-  { B }  C_  { A ,  B }
2 ssun1 3271 . . 3  |-  { A ,  B }  C_  ( { A ,  B }  u.  { C } )
31, 2sstri 3137 . 2  |-  { B }  C_  ( { A ,  B }  u.  { C } )
4 df-tp 3569 . 2  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
53, 4sseqtrri 3163 1  |-  { B }  C_  { A ,  B ,  C }
Colors of variables: wff set class
Syntax hints:    u. cun 3100    C_ wss 3102   {csn 3561   {cpr 3562   {ctp 3563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pr 3568  df-tp 3569
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator