ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun2 Unicode version

Theorem ssun2 3291
Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
ssun2  |-  A  C_  ( B  u.  A
)

Proof of Theorem ssun2
StepHypRef Expression
1 ssun1 3290 . 2  |-  A  C_  ( A  u.  B
)
2 uncom 3271 . 2  |-  ( A  u.  B )  =  ( B  u.  A
)
31, 2sseqtri 3181 1  |-  A  C_  ( B  u.  A
)
Colors of variables: wff set class
Syntax hints:    u. cun 3119    C_ wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134
This theorem is referenced by:  ssun4  3293  elun2  3295  unv  3451  un00  3460  snsspr2  3727  snsstp3  3730  unexb  4425  rnexg  4874  brtpos0  6229  ac6sfi  6873  caserel  7061  pnfxr  7961  ltrelxr  7969  un0mulcl  9158  fsumsplit  11359  fprodsplitdc  11548  lgsdir2lem3  13686  bdunexb  13917
  Copyright terms: Public domain W3C validator