ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun2 Unicode version

Theorem ssun2 3323
Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
ssun2  |-  A  C_  ( B  u.  A
)

Proof of Theorem ssun2
StepHypRef Expression
1 ssun1 3322 . 2  |-  A  C_  ( A  u.  B
)
2 uncom 3303 . 2  |-  ( A  u.  B )  =  ( B  u.  A
)
31, 2sseqtri 3213 1  |-  A  C_  ( B  u.  A
)
Colors of variables: wff set class
Syntax hints:    u. cun 3151    C_ wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166
This theorem is referenced by:  ssun4  3325  elun2  3327  unv  3484  un00  3493  snsspr2  3767  snsstp3  3770  unexb  4473  rnexg  4927  brtpos0  6305  ac6sfi  6954  caserel  7146  pnfxr  8072  ltrelxr  8080  un0mulcl  9274  fsumsplit  11550  fprodsplitdc  11739  lspun  13898  cnfldcj  14056  elply2  14881  elplyd  14887  ply1term  14889  plyaddlem1  14893  plymullem1  14894  plymullem  14896  lgsdir2lem3  15146  bdunexb  15412
  Copyright terms: Public domain W3C validator