| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssun2 | Unicode version | ||
| Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssun2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 3344 |
. 2
| |
| 2 | uncom 3325 |
. 2
| |
| 3 | 1, 2 | sseqtri 3235 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 |
| This theorem is referenced by: ssun4 3347 elun2 3349 unv 3506 un00 3515 snsspr2 3793 snsstp3 3796 unexb 4507 rnexg 4962 brtpos0 6361 ac6sfi 7021 caserel 7215 pnfxr 8160 ltrelxr 8168 un0mulcl 9364 ccatclab 11088 ccatrn 11103 fsumsplit 11833 fprodsplitdc 12022 prdssca 13222 lspun 14279 cnfldcj 14442 cnfldtset 14443 cnfldle 14444 cnfldds 14445 dvmptfsum 15312 elply2 15322 elplyd 15328 ply1term 15330 plyaddlem1 15334 plymullem1 15335 plymullem 15337 lgsdir2lem3 15622 lgsquadlem2 15670 bdunexb 16055 |
| Copyright terms: Public domain | W3C validator |