ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun2 Unicode version

Theorem ssun2 3368
Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
ssun2  |-  A  C_  ( B  u.  A
)

Proof of Theorem ssun2
StepHypRef Expression
1 ssun1 3367 . 2  |-  A  C_  ( A  u.  B
)
2 uncom 3348 . 2  |-  ( A  u.  B )  =  ( B  u.  A
)
31, 2sseqtri 3258 1  |-  A  C_  ( B  u.  A
)
Colors of variables: wff set class
Syntax hints:    u. cun 3195    C_ wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210
This theorem is referenced by:  ssun4  3370  elun2  3372  unv  3529  un00  3538  snsspr2  3817  snsstp3  3820  unexb  4533  rnexg  4989  brtpos0  6398  ac6sfi  7060  caserel  7254  pnfxr  8199  ltrelxr  8207  un0mulcl  9403  ccatclab  11129  ccatrn  11144  fsumsplit  11918  fprodsplitdc  12107  prdssca  13308  lspun  14366  cnfldcj  14529  cnfldtset  14530  cnfldle  14531  cnfldds  14532  dvmptfsum  15399  elply2  15409  elplyd  15415  ply1term  15417  plyaddlem1  15421  plymullem1  15422  plymullem  15424  lgsdir2lem3  15709  lgsquadlem2  15757  bdunexb  16283
  Copyright terms: Public domain W3C validator