| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssun2 | Unicode version | ||
| Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssun2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 3336 |
. 2
| |
| 2 | uncom 3317 |
. 2
| |
| 3 | 1, 2 | sseqtri 3227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 |
| This theorem is referenced by: ssun4 3339 elun2 3341 unv 3498 un00 3507 snsspr2 3782 snsstp3 3785 unexb 4489 rnexg 4943 brtpos0 6338 ac6sfi 6995 caserel 7189 pnfxr 8125 ltrelxr 8133 un0mulcl 9329 ccatclab 11050 ccatrn 11065 fsumsplit 11718 fprodsplitdc 11907 prdssca 13107 lspun 14164 cnfldcj 14327 cnfldtset 14328 cnfldle 14329 cnfldds 14330 dvmptfsum 15197 elply2 15207 elplyd 15213 ply1term 15215 plyaddlem1 15219 plymullem1 15220 plymullem 15222 lgsdir2lem3 15507 lgsquadlem2 15555 bdunexb 15856 |
| Copyright terms: Public domain | W3C validator |