| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssun2 | Unicode version | ||
| Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssun2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 3367 |
. 2
| |
| 2 | uncom 3348 |
. 2
| |
| 3 | 1, 2 | sseqtri 3258 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 |
| This theorem is referenced by: ssun4 3370 elun2 3372 unv 3529 un00 3538 snsspr2 3817 snsstp3 3820 unexb 4533 rnexg 4989 brtpos0 6398 ac6sfi 7060 caserel 7254 pnfxr 8199 ltrelxr 8207 un0mulcl 9403 ccatclab 11129 ccatrn 11144 fsumsplit 11918 fprodsplitdc 12107 prdssca 13308 lspun 14366 cnfldcj 14529 cnfldtset 14530 cnfldle 14531 cnfldds 14532 dvmptfsum 15399 elply2 15409 elplyd 15415 ply1term 15417 plyaddlem1 15421 plymullem1 15422 plymullem 15424 lgsdir2lem3 15709 lgsquadlem2 15757 bdunexb 16283 |
| Copyright terms: Public domain | W3C validator |