![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssun2 | Unicode version |
Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
ssun2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3323 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | uncom 3304 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sseqtri 3214 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 |
This theorem is referenced by: ssun4 3326 elun2 3328 unv 3485 un00 3494 snsspr2 3768 snsstp3 3771 unexb 4474 rnexg 4928 brtpos0 6307 ac6sfi 6956 caserel 7148 pnfxr 8074 ltrelxr 8082 un0mulcl 9277 fsumsplit 11553 fprodsplitdc 11742 lspun 13901 cnfldcj 14064 cnfldtset 14065 cnfldle 14066 cnfldds 14067 dvmptfsum 14904 elply2 14914 elplyd 14920 ply1term 14922 plyaddlem1 14926 plymullem1 14927 plymullem 14929 lgsdir2lem3 15187 lgsquadlem2 15235 bdunexb 15482 |
Copyright terms: Public domain | W3C validator |