| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssun2 | Unicode version | ||
| Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssun2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 3336 |
. 2
| |
| 2 | uncom 3317 |
. 2
| |
| 3 | 1, 2 | sseqtri 3227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 |
| This theorem is referenced by: ssun4 3339 elun2 3341 unv 3498 un00 3507 snsspr2 3782 snsstp3 3785 unexb 4490 rnexg 4944 brtpos0 6340 ac6sfi 6997 caserel 7191 pnfxr 8127 ltrelxr 8135 un0mulcl 9331 ccatclab 11053 ccatrn 11068 fsumsplit 11751 fprodsplitdc 11940 prdssca 13140 lspun 14197 cnfldcj 14360 cnfldtset 14361 cnfldle 14362 cnfldds 14363 dvmptfsum 15230 elply2 15240 elplyd 15246 ply1term 15248 plyaddlem1 15252 plymullem1 15253 plymullem 15255 lgsdir2lem3 15540 lgsquadlem2 15588 bdunexb 15893 |
| Copyright terms: Public domain | W3C validator |