| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spc2ev | Unicode version | ||
| Description: Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995.) |
| Ref | Expression |
|---|---|
| spc2ev.1 |
|
| spc2ev.2 |
|
| spc2ev.3 |
|
| Ref | Expression |
|---|---|
| spc2ev |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spc2ev.1 |
. 2
| |
| 2 | spc2ev.2 |
. 2
| |
| 3 | spc2ev.3 |
. . 3
| |
| 4 | 3 | spc2egv 2864 |
. 2
|
| 5 | 1, 2, 4 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-v 2775 |
| This theorem is referenced by: relop 4832 th3qlem2 6732 endisj 6926 axcnre 8001 |
| Copyright terms: Public domain | W3C validator |