Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spc2ev | Unicode version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995.) |
Ref | Expression |
---|---|
spc2ev.1 | |
spc2ev.2 | |
spc2ev.3 |
Ref | Expression |
---|---|
spc2ev |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spc2ev.1 | . 2 | |
2 | spc2ev.2 | . 2 | |
3 | spc2ev.3 | . . 3 | |
4 | 3 | spc2egv 2820 | . 2 |
5 | 1, 2, 4 | mp2an 424 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 cvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 |
This theorem is referenced by: relop 4761 th3qlem2 6616 endisj 6802 axcnre 7843 |
Copyright terms: Public domain | W3C validator |