ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spc2ev Unicode version

Theorem spc2ev 2822
Description: Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995.)
Hypotheses
Ref Expression
spc2ev.1  |-  A  e. 
_V
spc2ev.2  |-  B  e. 
_V
spc2ev.3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
spc2ev  |-  ( ps 
->  E. x E. y ph )
Distinct variable groups:    x, y, A   
x, B, y    ps, x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem spc2ev
StepHypRef Expression
1 spc2ev.1 . 2  |-  A  e. 
_V
2 spc2ev.2 . 2  |-  B  e. 
_V
3 spc2ev.3 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
43spc2egv 2816 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( ps  ->  E. x E. y ph ) )
51, 2, 4mp2an 423 1  |-  ( ps 
->  E. x E. y ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   E.wex 1480    e. wcel 2136   _Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728
This theorem is referenced by:  relop  4754  th3qlem2  6604  endisj  6790  axcnre  7822
  Copyright terms: Public domain W3C validator