Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spc2ev | Unicode version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995.) |
Ref | Expression |
---|---|
spc2ev.1 | |
spc2ev.2 | |
spc2ev.3 |
Ref | Expression |
---|---|
spc2ev |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spc2ev.1 | . 2 | |
2 | spc2ev.2 | . 2 | |
3 | spc2ev.3 | . . 3 | |
4 | 3 | spc2egv 2816 | . 2 |
5 | 1, 2, 4 | mp2an 423 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 cvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: relop 4754 th3qlem2 6604 endisj 6790 axcnre 7822 |
Copyright terms: Public domain | W3C validator |