ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spc2ev GIF version

Theorem spc2ev 2822
Description: Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995.)
Hypotheses
Ref Expression
spc2ev.1 𝐴 ∈ V
spc2ev.2 𝐵 ∈ V
spc2ev.3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
spc2ev (𝜓 → ∃𝑥𝑦𝜑)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem spc2ev
StepHypRef Expression
1 spc2ev.1 . 2 𝐴 ∈ V
2 spc2ev.2 . 2 𝐵 ∈ V
3 spc2ev.3 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
43spc2egv 2816 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝜓 → ∃𝑥𝑦𝜑))
51, 2, 4mp2an 423 1 (𝜓 → ∃𝑥𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wex 1480  wcel 2136  Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728
This theorem is referenced by:  relop  4754  th3qlem2  6604  endisj  6790  axcnre  7822
  Copyright terms: Public domain W3C validator