Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spc2ev | GIF version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995.) |
Ref | Expression |
---|---|
spc2ev.1 | ⊢ 𝐴 ∈ V |
spc2ev.2 | ⊢ 𝐵 ∈ V |
spc2ev.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spc2ev | ⊢ (𝜓 → ∃𝑥∃𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spc2ev.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | spc2ev.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | spc2ev.3 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
4 | 3 | spc2egv 2820 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝜓 → ∃𝑥∃𝑦𝜑)) |
5 | 1, 2, 4 | mp2an 424 | 1 ⊢ (𝜓 → ∃𝑥∃𝑦𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∃wex 1485 ∈ wcel 2141 Vcvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 |
This theorem is referenced by: relop 4761 th3qlem2 6616 endisj 6802 axcnre 7843 |
Copyright terms: Public domain | W3C validator |