| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > th3qlem2 | Unicode version | ||
| Description: Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60, extended to operations on ordered pairs. The fourth hypothesis is the compatibility assumption. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| th3q.1 |
|
| th3q.2 |
|
| th3q.4 |
|
| Ref | Expression |
|---|---|
| th3qlem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | th3q.2 |
. . 3
| |
| 2 | eqid 2205 |
. . . . 5
| |
| 3 | breq1 4047 |
. . . . . . . 8
| |
| 4 | 3 | anbi1d 465 |
. . . . . . 7
|
| 5 | oveq1 5951 |
. . . . . . . 8
| |
| 6 | 5 | breq1d 4054 |
. . . . . . 7
|
| 7 | 4, 6 | imbi12d 234 |
. . . . . 6
|
| 8 | 7 | imbi2d 230 |
. . . . 5
|
| 9 | breq2 4048 |
. . . . . . . 8
| |
| 10 | 9 | anbi1d 465 |
. . . . . . 7
|
| 11 | oveq1 5951 |
. . . . . . . 8
| |
| 12 | 11 | breq2d 4056 |
. . . . . . 7
|
| 13 | 10, 12 | imbi12d 234 |
. . . . . 6
|
| 14 | 13 | imbi2d 230 |
. . . . 5
|
| 15 | breq1 4047 |
. . . . . . . . . 10
| |
| 16 | 15 | anbi2d 464 |
. . . . . . . . 9
|
| 17 | oveq2 5952 |
. . . . . . . . . 10
| |
| 18 | 17 | breq1d 4054 |
. . . . . . . . 9
|
| 19 | 16, 18 | imbi12d 234 |
. . . . . . . 8
|
| 20 | 19 | imbi2d 230 |
. . . . . . 7
|
| 21 | breq2 4048 |
. . . . . . . . . 10
| |
| 22 | 21 | anbi2d 464 |
. . . . . . . . 9
|
| 23 | oveq2 5952 |
. . . . . . . . . 10
| |
| 24 | 23 | breq2d 4056 |
. . . . . . . . 9
|
| 25 | 22, 24 | imbi12d 234 |
. . . . . . . 8
|
| 26 | 25 | imbi2d 230 |
. . . . . . 7
|
| 27 | th3q.4 |
. . . . . . . 8
| |
| 28 | 27 | expcom 116 |
. . . . . . 7
|
| 29 | 2, 20, 26, 28 | 2optocl 4752 |
. . . . . 6
|
| 30 | 29 | com12 30 |
. . . . 5
|
| 31 | 2, 8, 14, 30 | 2optocl 4752 |
. . . 4
|
| 32 | 31 | imp 124 |
. . 3
|
| 33 | 1, 32 | th3qlem1 6724 |
. 2
|
| 34 | vex 2775 |
. . . . . . 7
| |
| 35 | vex 2775 |
. . . . . . 7
| |
| 36 | 34, 35 | opex 4273 |
. . . . . 6
|
| 37 | vex 2775 |
. . . . . . 7
| |
| 38 | vex 2775 |
. . . . . . 7
| |
| 39 | 37, 38 | opex 4273 |
. . . . . 6
|
| 40 | eceq1 6655 |
. . . . . . . . 9
| |
| 41 | 40 | eqeq2d 2217 |
. . . . . . . 8
|
| 42 | eceq1 6655 |
. . . . . . . . 9
| |
| 43 | 42 | eqeq2d 2217 |
. . . . . . . 8
|
| 44 | 41, 43 | bi2anan9 606 |
. . . . . . 7
|
| 45 | oveq12 5953 |
. . . . . . . . 9
| |
| 46 | 45 | eceq1d 6656 |
. . . . . . . 8
|
| 47 | 46 | eqeq2d 2217 |
. . . . . . 7
|
| 48 | 44, 47 | anbi12d 473 |
. . . . . 6
|
| 49 | 36, 39, 48 | spc2ev 2869 |
. . . . 5
|
| 50 | 49 | exlimivv 1920 |
. . . 4
|
| 51 | 50 | exlimivv 1920 |
. . 3
|
| 52 | 51 | moimi 2119 |
. 2
|
| 53 | 33, 52 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fv 5279 df-ov 5947 df-er 6620 df-ec 6622 df-qs 6626 |
| This theorem is referenced by: th3qcor 6726 th3q 6727 |
| Copyright terms: Public domain | W3C validator |