Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > th3qlem2 | Unicode version |
Description: Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60, extended to operations on ordered pairs. The fourth hypothesis is the compatibility assumption. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
th3q.1 | |
th3q.2 | |
th3q.4 |
Ref | Expression |
---|---|
th3qlem2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | th3q.2 | . . 3 | |
2 | eqid 2165 | . . . . 5 | |
3 | breq1 3985 | . . . . . . . 8 | |
4 | 3 | anbi1d 461 | . . . . . . 7 |
5 | oveq1 5849 | . . . . . . . 8 | |
6 | 5 | breq1d 3992 | . . . . . . 7 |
7 | 4, 6 | imbi12d 233 | . . . . . 6 |
8 | 7 | imbi2d 229 | . . . . 5 |
9 | breq2 3986 | . . . . . . . 8 | |
10 | 9 | anbi1d 461 | . . . . . . 7 |
11 | oveq1 5849 | . . . . . . . 8 | |
12 | 11 | breq2d 3994 | . . . . . . 7 |
13 | 10, 12 | imbi12d 233 | . . . . . 6 |
14 | 13 | imbi2d 229 | . . . . 5 |
15 | breq1 3985 | . . . . . . . . . 10 | |
16 | 15 | anbi2d 460 | . . . . . . . . 9 |
17 | oveq2 5850 | . . . . . . . . . 10 | |
18 | 17 | breq1d 3992 | . . . . . . . . 9 |
19 | 16, 18 | imbi12d 233 | . . . . . . . 8 |
20 | 19 | imbi2d 229 | . . . . . . 7 |
21 | breq2 3986 | . . . . . . . . . 10 | |
22 | 21 | anbi2d 460 | . . . . . . . . 9 |
23 | oveq2 5850 | . . . . . . . . . 10 | |
24 | 23 | breq2d 3994 | . . . . . . . . 9 |
25 | 22, 24 | imbi12d 233 | . . . . . . . 8 |
26 | 25 | imbi2d 229 | . . . . . . 7 |
27 | th3q.4 | . . . . . . . 8 | |
28 | 27 | expcom 115 | . . . . . . 7 |
29 | 2, 20, 26, 28 | 2optocl 4681 | . . . . . 6 |
30 | 29 | com12 30 | . . . . 5 |
31 | 2, 8, 14, 30 | 2optocl 4681 | . . . 4 |
32 | 31 | imp 123 | . . 3 |
33 | 1, 32 | th3qlem1 6603 | . 2 |
34 | vex 2729 | . . . . . . 7 | |
35 | vex 2729 | . . . . . . 7 | |
36 | 34, 35 | opex 4207 | . . . . . 6 |
37 | vex 2729 | . . . . . . 7 | |
38 | vex 2729 | . . . . . . 7 | |
39 | 37, 38 | opex 4207 | . . . . . 6 |
40 | eceq1 6536 | . . . . . . . . 9 | |
41 | 40 | eqeq2d 2177 | . . . . . . . 8 |
42 | eceq1 6536 | . . . . . . . . 9 | |
43 | 42 | eqeq2d 2177 | . . . . . . . 8 |
44 | 41, 43 | bi2anan9 596 | . . . . . . 7 |
45 | oveq12 5851 | . . . . . . . . 9 | |
46 | 45 | eceq1d 6537 | . . . . . . . 8 |
47 | 46 | eqeq2d 2177 | . . . . . . 7 |
48 | 44, 47 | anbi12d 465 | . . . . . 6 |
49 | 36, 39, 48 | spc2ev 2822 | . . . . 5 |
50 | 49 | exlimivv 1884 | . . . 4 |
51 | 50 | exlimivv 1884 | . . 3 |
52 | 51 | moimi 2079 | . 2 |
53 | 33, 52 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wex 1480 wmo 2015 wcel 2136 cvv 2726 cop 3579 class class class wbr 3982 cxp 4602 (class class class)co 5842 wer 6498 cec 6499 cqs 6500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fv 5196 df-ov 5845 df-er 6501 df-ec 6503 df-qs 6507 |
This theorem is referenced by: th3qcor 6605 th3q 6606 |
Copyright terms: Public domain | W3C validator |