Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > th3qlem2 | Unicode version |
Description: Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60, extended to operations on ordered pairs. The fourth hypothesis is the compatibility assumption. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
th3q.1 | |
th3q.2 | |
th3q.4 |
Ref | Expression |
---|---|
th3qlem2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | th3q.2 | . . 3 | |
2 | eqid 2175 | . . . . 5 | |
3 | breq1 4001 | . . . . . . . 8 | |
4 | 3 | anbi1d 465 | . . . . . . 7 |
5 | oveq1 5872 | . . . . . . . 8 | |
6 | 5 | breq1d 4008 | . . . . . . 7 |
7 | 4, 6 | imbi12d 234 | . . . . . 6 |
8 | 7 | imbi2d 230 | . . . . 5 |
9 | breq2 4002 | . . . . . . . 8 | |
10 | 9 | anbi1d 465 | . . . . . . 7 |
11 | oveq1 5872 | . . . . . . . 8 | |
12 | 11 | breq2d 4010 | . . . . . . 7 |
13 | 10, 12 | imbi12d 234 | . . . . . 6 |
14 | 13 | imbi2d 230 | . . . . 5 |
15 | breq1 4001 | . . . . . . . . . 10 | |
16 | 15 | anbi2d 464 | . . . . . . . . 9 |
17 | oveq2 5873 | . . . . . . . . . 10 | |
18 | 17 | breq1d 4008 | . . . . . . . . 9 |
19 | 16, 18 | imbi12d 234 | . . . . . . . 8 |
20 | 19 | imbi2d 230 | . . . . . . 7 |
21 | breq2 4002 | . . . . . . . . . 10 | |
22 | 21 | anbi2d 464 | . . . . . . . . 9 |
23 | oveq2 5873 | . . . . . . . . . 10 | |
24 | 23 | breq2d 4010 | . . . . . . . . 9 |
25 | 22, 24 | imbi12d 234 | . . . . . . . 8 |
26 | 25 | imbi2d 230 | . . . . . . 7 |
27 | th3q.4 | . . . . . . . 8 | |
28 | 27 | expcom 116 | . . . . . . 7 |
29 | 2, 20, 26, 28 | 2optocl 4697 | . . . . . 6 |
30 | 29 | com12 30 | . . . . 5 |
31 | 2, 8, 14, 30 | 2optocl 4697 | . . . 4 |
32 | 31 | imp 124 | . . 3 |
33 | 1, 32 | th3qlem1 6627 | . 2 |
34 | vex 2738 | . . . . . . 7 | |
35 | vex 2738 | . . . . . . 7 | |
36 | 34, 35 | opex 4223 | . . . . . 6 |
37 | vex 2738 | . . . . . . 7 | |
38 | vex 2738 | . . . . . . 7 | |
39 | 37, 38 | opex 4223 | . . . . . 6 |
40 | eceq1 6560 | . . . . . . . . 9 | |
41 | 40 | eqeq2d 2187 | . . . . . . . 8 |
42 | eceq1 6560 | . . . . . . . . 9 | |
43 | 42 | eqeq2d 2187 | . . . . . . . 8 |
44 | 41, 43 | bi2anan9 606 | . . . . . . 7 |
45 | oveq12 5874 | . . . . . . . . 9 | |
46 | 45 | eceq1d 6561 | . . . . . . . 8 |
47 | 46 | eqeq2d 2187 | . . . . . . 7 |
48 | 44, 47 | anbi12d 473 | . . . . . 6 |
49 | 36, 39, 48 | spc2ev 2831 | . . . . 5 |
50 | 49 | exlimivv 1894 | . . . 4 |
51 | 50 | exlimivv 1894 | . . 3 |
52 | 51 | moimi 2089 | . 2 |
53 | 33, 52 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wceq 1353 wex 1490 wmo 2025 wcel 2146 cvv 2735 cop 3592 class class class wbr 3998 cxp 4618 (class class class)co 5865 wer 6522 cec 6523 cqs 6524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fv 5216 df-ov 5868 df-er 6525 df-ec 6527 df-qs 6531 |
This theorem is referenced by: th3qcor 6629 th3q 6630 |
Copyright terms: Public domain | W3C validator |