ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  th3qlem2 Unicode version

Theorem th3qlem2 6656
Description: Lemma for Exercise 44 version of Theorem 3Q of [Enderton] p. 60, extended to operations on ordered pairs. The fourth hypothesis is the compatibility assumption. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
th3q.1  |-  .~  e.  _V
th3q.2  |-  .~  Er  ( S  X.  S
)
th3q.4  |-  ( ( ( ( w  e.  S  /\  v  e.  S )  /\  (
u  e.  S  /\  t  e.  S )
)  /\  ( (
s  e.  S  /\  f  e.  S )  /\  ( g  e.  S  /\  h  e.  S
) ) )  -> 
( ( <. w ,  v >.  .~  <. u ,  t >.  /\  <. s ,  f >.  .~  <. g ,  h >. )  ->  ( <. w ,  v
>.  .+  <. s ,  f
>. )  .~  ( <. u ,  t >.  .+  <. g ,  h >. ) ) )
Assertion
Ref Expression
th3qlem2  |-  ( ( A  e.  ( ( S  X.  S ) /.  .~  )  /\  B  e.  ( ( S  X.  S ) /.  .~  ) )  ->  E* z E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  .~  /\  B  =  [ <. u ,  t
>. ]  .~  )  /\  z  =  [ ( <. w ,  v >.  .+  <. u ,  t
>. ) ]  .~  )
)
Distinct variable groups:    z, w, v, u, t, s, f, g, h,  .~    z, S, w, v, u, t, s, f, g, h   
z, A, w, v, u, t, s, f   
z, B, w, v, u, t, s, f   
z,  .+ , w, v, u, t, s, f, g, h
Allowed substitution hints:    A( g, h)    B( g, h)

Proof of Theorem th3qlem2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 th3q.2 . . 3  |-  .~  Er  ( S  X.  S
)
2 eqid 2189 . . . . 5  |-  ( S  X.  S )  =  ( S  X.  S
)
3 breq1 4021 . . . . . . . 8  |-  ( <.
w ,  v >.  =  s  ->  ( <.
w ,  v >.  .~  <. u ,  t
>. 
<->  s  .~  <. u ,  t >. )
)
43anbi1d 465 . . . . . . 7  |-  ( <.
w ,  v >.  =  s  ->  ( (
<. w ,  v >.  .~  <. u ,  t
>.  /\  x  .~  y
)  <->  ( s  .~  <.
u ,  t >.  /\  x  .~  y
) ) )
5 oveq1 5898 . . . . . . . 8  |-  ( <.
w ,  v >.  =  s  ->  ( <.
w ,  v >.  .+  x )  =  ( s  .+  x ) )
65breq1d 4028 . . . . . . 7  |-  ( <.
w ,  v >.  =  s  ->  ( (
<. w ,  v >.  .+  x )  .~  ( <. u ,  t >.  .+  y )  <->  ( s  .+  x )  .~  ( <. u ,  t >.  .+  y ) ) )
74, 6imbi12d 234 . . . . . 6  |-  ( <.
w ,  v >.  =  s  ->  ( ( ( <. w ,  v
>.  .~  <. u ,  t
>.  /\  x  .~  y
)  ->  ( <. w ,  v >.  .+  x
)  .~  ( <. u ,  t >.  .+  y
) )  <->  ( (
s  .~  <. u ,  t >.  /\  x  .~  y )  ->  (
s  .+  x )  .~  ( <. u ,  t
>.  .+  y ) ) ) )
87imbi2d 230 . . . . 5  |-  ( <.
w ,  v >.  =  s  ->  ( ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  ->  ( ( <. w ,  v >.  .~  <. u ,  t
>.  /\  x  .~  y
)  ->  ( <. w ,  v >.  .+  x
)  .~  ( <. u ,  t >.  .+  y
) ) )  <->  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  -> 
( ( s  .~  <.
u ,  t >.  /\  x  .~  y
)  ->  ( s  .+  x )  .~  ( <. u ,  t >.  .+  y ) ) ) ) )
9 breq2 4022 . . . . . . . 8  |-  ( <.
u ,  t >.  =  f  ->  ( s  .~  <. u ,  t
>. 
<->  s  .~  f ) )
109anbi1d 465 . . . . . . 7  |-  ( <.
u ,  t >.  =  f  ->  ( ( s  .~  <. u ,  t >.  /\  x  .~  y )  <->  ( s  .~  f  /\  x  .~  y ) ) )
11 oveq1 5898 . . . . . . . 8  |-  ( <.
u ,  t >.  =  f  ->  ( <.
u ,  t >.  .+  y )  =  ( f  .+  y ) )
1211breq2d 4030 . . . . . . 7  |-  ( <.
u ,  t >.  =  f  ->  ( ( s  .+  x )  .~  ( <. u ,  t >.  .+  y
)  <->  ( s  .+  x )  .~  (
f  .+  y )
) )
1310, 12imbi12d 234 . . . . . 6  |-  ( <.
u ,  t >.  =  f  ->  ( ( ( s  .~  <. u ,  t >.  /\  x  .~  y )  ->  (
s  .+  x )  .~  ( <. u ,  t
>.  .+  y ) )  <-> 
( ( s  .~  f  /\  x  .~  y
)  ->  ( s  .+  x )  .~  (
f  .+  y )
) ) )
1413imbi2d 230 . . . . 5  |-  ( <.
u ,  t >.  =  f  ->  ( ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  ->  ( (
s  .~  <. u ,  t >.  /\  x  .~  y )  ->  (
s  .+  x )  .~  ( <. u ,  t
>.  .+  y ) ) )  <->  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S
) )  ->  (
( s  .~  f  /\  x  .~  y
)  ->  ( s  .+  x )  .~  (
f  .+  y )
) ) ) )
15 breq1 4021 . . . . . . . . . 10  |-  ( <.
s ,  f >.  =  x  ->  ( <.
s ,  f >.  .~  <. g ,  h >.  <-> 
x  .~  <. g ,  h >. ) )
1615anbi2d 464 . . . . . . . . 9  |-  ( <.
s ,  f >.  =  x  ->  ( (
<. w ,  v >.  .~  <. u ,  t
>.  /\  <. s ,  f
>.  .~  <. g ,  h >. )  <->  ( <. w ,  v >.  .~  <. u ,  t >.  /\  x  .~  <. g ,  h >. ) ) )
17 oveq2 5899 . . . . . . . . . 10  |-  ( <.
s ,  f >.  =  x  ->  ( <.
w ,  v >.  .+  <. s ,  f
>. )  =  ( <. w ,  v >.  .+  x ) )
1817breq1d 4028 . . . . . . . . 9  |-  ( <.
s ,  f >.  =  x  ->  ( (
<. w ,  v >.  .+  <. s ,  f
>. )  .~  ( <. u ,  t >.  .+  <. g ,  h >. )  <->  ( <. w ,  v >.  .+  x
)  .~  ( <. u ,  t >.  .+  <. g ,  h >. )
) )
1916, 18imbi12d 234 . . . . . . . 8  |-  ( <.
s ,  f >.  =  x  ->  ( ( ( <. w ,  v
>.  .~  <. u ,  t
>.  /\  <. s ,  f
>.  .~  <. g ,  h >. )  ->  ( <. w ,  v >.  .+  <. s ,  f >. )  .~  ( <. u ,  t
>.  .+  <. g ,  h >. ) )  <->  ( ( <. w ,  v >.  .~  <. u ,  t
>.  /\  x  .~  <. g ,  h >. )  ->  ( <. w ,  v
>.  .+  x )  .~  ( <. u ,  t
>.  .+  <. g ,  h >. ) ) ) )
2019imbi2d 230 . . . . . . 7  |-  ( <.
s ,  f >.  =  x  ->  ( ( ( ( w  e.  S  /\  v  e.  S )  /\  (
u  e.  S  /\  t  e.  S )
)  ->  ( ( <. w ,  v >.  .~  <. u ,  t
>.  /\  <. s ,  f
>.  .~  <. g ,  h >. )  ->  ( <. w ,  v >.  .+  <. s ,  f >. )  .~  ( <. u ,  t
>.  .+  <. g ,  h >. ) ) )  <->  ( (
( w  e.  S  /\  v  e.  S
)  /\  ( u  e.  S  /\  t  e.  S ) )  -> 
( ( <. w ,  v >.  .~  <. u ,  t >.  /\  x  .~  <. g ,  h >. )  ->  ( <. w ,  v >.  .+  x
)  .~  ( <. u ,  t >.  .+  <. g ,  h >. )
) ) ) )
21 breq2 4022 . . . . . . . . . 10  |-  ( <.
g ,  h >.  =  y  ->  ( x  .~  <. g ,  h >.  <-> 
x  .~  y )
)
2221anbi2d 464 . . . . . . . . 9  |-  ( <.
g ,  h >.  =  y  ->  ( ( <. w ,  v >.  .~  <. u ,  t
>.  /\  x  .~  <. g ,  h >. )  <->  (
<. w ,  v >.  .~  <. u ,  t
>.  /\  x  .~  y
) ) )
23 oveq2 5899 . . . . . . . . . 10  |-  ( <.
g ,  h >.  =  y  ->  ( <. u ,  t >.  .+  <. g ,  h >. )  =  ( <. u ,  t >.  .+  y
) )
2423breq2d 4030 . . . . . . . . 9  |-  ( <.
g ,  h >.  =  y  ->  ( ( <. w ,  v >.  .+  x )  .~  ( <. u ,  t >.  .+  <. g ,  h >. )  <->  ( <. w ,  v >.  .+  x
)  .~  ( <. u ,  t >.  .+  y
) ) )
2522, 24imbi12d 234 . . . . . . . 8  |-  ( <.
g ,  h >.  =  y  ->  ( (
( <. w ,  v
>.  .~  <. u ,  t
>.  /\  x  .~  <. g ,  h >. )  ->  ( <. w ,  v
>.  .+  x )  .~  ( <. u ,  t
>.  .+  <. g ,  h >. ) )  <->  ( ( <. w ,  v >.  .~  <. u ,  t
>.  /\  x  .~  y
)  ->  ( <. w ,  v >.  .+  x
)  .~  ( <. u ,  t >.  .+  y
) ) ) )
2625imbi2d 230 . . . . . . 7  |-  ( <.
g ,  h >.  =  y  ->  ( (
( ( w  e.  S  /\  v  e.  S )  /\  (
u  e.  S  /\  t  e.  S )
)  ->  ( ( <. w ,  v >.  .~  <. u ,  t
>.  /\  x  .~  <. g ,  h >. )  ->  ( <. w ,  v
>.  .+  x )  .~  ( <. u ,  t
>.  .+  <. g ,  h >. ) ) )  <->  ( (
( w  e.  S  /\  v  e.  S
)  /\  ( u  e.  S  /\  t  e.  S ) )  -> 
( ( <. w ,  v >.  .~  <. u ,  t >.  /\  x  .~  y )  ->  ( <. w ,  v >.  .+  x )  .~  ( <. u ,  t >.  .+  y ) ) ) ) )
27 th3q.4 . . . . . . . 8  |-  ( ( ( ( w  e.  S  /\  v  e.  S )  /\  (
u  e.  S  /\  t  e.  S )
)  /\  ( (
s  e.  S  /\  f  e.  S )  /\  ( g  e.  S  /\  h  e.  S
) ) )  -> 
( ( <. w ,  v >.  .~  <. u ,  t >.  /\  <. s ,  f >.  .~  <. g ,  h >. )  ->  ( <. w ,  v
>.  .+  <. s ,  f
>. )  .~  ( <. u ,  t >.  .+  <. g ,  h >. ) ) )
2827expcom 116 . . . . . . 7  |-  ( ( ( s  e.  S  /\  f  e.  S
)  /\  ( g  e.  S  /\  h  e.  S ) )  -> 
( ( ( w  e.  S  /\  v  e.  S )  /\  (
u  e.  S  /\  t  e.  S )
)  ->  ( ( <. w ,  v >.  .~  <. u ,  t
>.  /\  <. s ,  f
>.  .~  <. g ,  h >. )  ->  ( <. w ,  v >.  .+  <. s ,  f >. )  .~  ( <. u ,  t
>.  .+  <. g ,  h >. ) ) ) )
292, 20, 26, 282optocl 4718 . . . . . 6  |-  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  -> 
( ( ( w  e.  S  /\  v  e.  S )  /\  (
u  e.  S  /\  t  e.  S )
)  ->  ( ( <. w ,  v >.  .~  <. u ,  t
>.  /\  x  .~  y
)  ->  ( <. w ,  v >.  .+  x
)  .~  ( <. u ,  t >.  .+  y
) ) ) )
3029com12 30 . . . . 5  |-  ( ( ( w  e.  S  /\  v  e.  S
)  /\  ( u  e.  S  /\  t  e.  S ) )  -> 
( ( x  e.  ( S  X.  S
)  /\  y  e.  ( S  X.  S
) )  ->  (
( <. w ,  v
>.  .~  <. u ,  t
>.  /\  x  .~  y
)  ->  ( <. w ,  v >.  .+  x
)  .~  ( <. u ,  t >.  .+  y
) ) ) )
312, 8, 14, 302optocl 4718 . . . 4  |-  ( ( s  e.  ( S  X.  S )  /\  f  e.  ( S  X.  S ) )  -> 
( ( x  e.  ( S  X.  S
)  /\  y  e.  ( S  X.  S
) )  ->  (
( s  .~  f  /\  x  .~  y
)  ->  ( s  .+  x )  .~  (
f  .+  y )
) ) )
3231imp 124 . . 3  |-  ( ( ( s  e.  ( S  X.  S )  /\  f  e.  ( S  X.  S ) )  /\  ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S
) ) )  -> 
( ( s  .~  f  /\  x  .~  y
)  ->  ( s  .+  x )  .~  (
f  .+  y )
) )
331, 32th3qlem1 6655 . 2  |-  ( ( A  e.  ( ( S  X.  S ) /.  .~  )  /\  B  e.  ( ( S  X.  S ) /.  .~  ) )  ->  E* z E. s E. x
( ( A  =  [ s ]  .~  /\  B  =  [ x ]  .~  )  /\  z  =  [ ( s  .+  x ) ]  .~  ) )
34 vex 2755 . . . . . . 7  |-  w  e. 
_V
35 vex 2755 . . . . . . 7  |-  v  e. 
_V
3634, 35opex 4244 . . . . . 6  |-  <. w ,  v >.  e.  _V
37 vex 2755 . . . . . . 7  |-  u  e. 
_V
38 vex 2755 . . . . . . 7  |-  t  e. 
_V
3937, 38opex 4244 . . . . . 6  |-  <. u ,  t >.  e.  _V
40 eceq1 6588 . . . . . . . . 9  |-  ( s  =  <. w ,  v
>.  ->  [ s ]  .~  =  [ <. w ,  v >. ]  .~  )
4140eqeq2d 2201 . . . . . . . 8  |-  ( s  =  <. w ,  v
>.  ->  ( A  =  [ s ]  .~  <->  A  =  [ <. w ,  v >. ]  .~  ) )
42 eceq1 6588 . . . . . . . . 9  |-  ( x  =  <. u ,  t
>.  ->  [ x ]  .~  =  [ <. u ,  t >. ]  .~  )
4342eqeq2d 2201 . . . . . . . 8  |-  ( x  =  <. u ,  t
>.  ->  ( B  =  [ x ]  .~  <->  B  =  [ <. u ,  t >. ]  .~  ) )
4441, 43bi2anan9 606 . . . . . . 7  |-  ( ( s  =  <. w ,  v >.  /\  x  =  <. u ,  t
>. )  ->  ( ( A  =  [ s ]  .~  /\  B  =  [ x ]  .~  ) 
<->  ( A  =  [ <. w ,  v >. ]  .~  /\  B  =  [ <. u ,  t
>. ]  .~  ) ) )
45 oveq12 5900 . . . . . . . . 9  |-  ( ( s  =  <. w ,  v >.  /\  x  =  <. u ,  t
>. )  ->  ( s 
.+  x )  =  ( <. w ,  v
>.  .+  <. u ,  t
>. ) )
4645eceq1d 6589 . . . . . . . 8  |-  ( ( s  =  <. w ,  v >.  /\  x  =  <. u ,  t
>. )  ->  [ ( s  .+  x ) ]  .~  =  [
( <. w ,  v
>.  .+  <. u ,  t
>. ) ]  .~  )
4746eqeq2d 2201 . . . . . . 7  |-  ( ( s  =  <. w ,  v >.  /\  x  =  <. u ,  t
>. )  ->  ( z  =  [ ( s 
.+  x ) ]  .~  <->  z  =  [
( <. w ,  v
>.  .+  <. u ,  t
>. ) ]  .~  )
)
4844, 47anbi12d 473 . . . . . 6  |-  ( ( s  =  <. w ,  v >.  /\  x  =  <. u ,  t
>. )  ->  ( ( ( A  =  [
s ]  .~  /\  B  =  [ x ]  .~  )  /\  z  =  [ ( s  .+  x ) ]  .~  ) 
<->  ( ( A  =  [ <. w ,  v
>. ]  .~  /\  B  =  [ <. u ,  t
>. ]  .~  )  /\  z  =  [ ( <. w ,  v >.  .+  <. u ,  t
>. ) ]  .~  )
) )
4936, 39, 48spc2ev 2848 . . . . 5  |-  ( ( ( A  =  [ <. w ,  v >. ]  .~  /\  B  =  [ <. u ,  t
>. ]  .~  )  /\  z  =  [ ( <. w ,  v >.  .+  <. u ,  t
>. ) ]  .~  )  ->  E. s E. x
( ( A  =  [ s ]  .~  /\  B  =  [ x ]  .~  )  /\  z  =  [ ( s  .+  x ) ]  .~  ) )
5049exlimivv 1908 . . . 4  |-  ( E. u E. t ( ( A  =  [ <. w ,  v >. ]  .~  /\  B  =  [ <. u ,  t
>. ]  .~  )  /\  z  =  [ ( <. w ,  v >.  .+  <. u ,  t
>. ) ]  .~  )  ->  E. s E. x
( ( A  =  [ s ]  .~  /\  B  =  [ x ]  .~  )  /\  z  =  [ ( s  .+  x ) ]  .~  ) )
5150exlimivv 1908 . . 3  |-  ( E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  .~  /\  B  =  [ <. u ,  t
>. ]  .~  )  /\  z  =  [ ( <. w ,  v >.  .+  <. u ,  t
>. ) ]  .~  )  ->  E. s E. x
( ( A  =  [ s ]  .~  /\  B  =  [ x ]  .~  )  /\  z  =  [ ( s  .+  x ) ]  .~  ) )
5251moimi 2103 . 2  |-  ( E* z E. s E. x ( ( A  =  [ s ]  .~  /\  B  =  [ x ]  .~  )  /\  z  =  [
( s  .+  x
) ]  .~  )  ->  E* z E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  .~  /\  B  =  [ <. u ,  t >. ]  .~  )  /\  z  =  [
( <. w ,  v
>.  .+  <. u ,  t
>. ) ]  .~  )
)
5333, 52syl 14 1  |-  ( ( A  e.  ( ( S  X.  S ) /.  .~  )  /\  B  e.  ( ( S  X.  S ) /.  .~  ) )  ->  E* z E. w E. v E. u E. t ( ( A  =  [ <. w ,  v >. ]  .~  /\  B  =  [ <. u ,  t
>. ]  .~  )  /\  z  =  [ ( <. w ,  v >.  .+  <. u ,  t
>. ) ]  .~  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503   E*wmo 2039    e. wcel 2160   _Vcvv 2752   <.cop 3610   class class class wbr 4018    X. cxp 4639  (class class class)co 5891    Er wer 6550   [cec 6551   /.cqs 6552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fv 5239  df-ov 5894  df-er 6553  df-ec 6555  df-qs 6559
This theorem is referenced by:  th3qcor  6657  th3q  6658
  Copyright terms: Public domain W3C validator