| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > endisj | Unicode version | ||
| Description: Any two sets are equinumerous to disjoint sets. Exercise 4.39 of [Mendelson] p. 255. (Contributed by NM, 16-Apr-2004.) |
| Ref | Expression |
|---|---|
| endisj.1 |
|
| endisj.2 |
|
| Ref | Expression |
|---|---|
| endisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endisj.1 |
. . . 4
| |
| 2 | 0ex 4211 |
. . . 4
| |
| 3 | 1, 2 | xpsnen 6980 |
. . 3
|
| 4 | endisj.2 |
. . . 4
| |
| 5 | 1on 6569 |
. . . . 5
| |
| 6 | 5 | elexi 2812 |
. . . 4
|
| 7 | 4, 6 | xpsnen 6980 |
. . 3
|
| 8 | 3, 7 | pm3.2i 272 |
. 2
|
| 9 | xp01disj 6579 |
. 2
| |
| 10 | p0ex 4272 |
. . . 4
| |
| 11 | 1, 10 | xpex 4834 |
. . 3
|
| 12 | 6 | snex 4269 |
. . . 4
|
| 13 | 4, 12 | xpex 4834 |
. . 3
|
| 14 | breq1 4086 |
. . . . 5
| |
| 15 | breq1 4086 |
. . . . 5
| |
| 16 | 14, 15 | bi2anan9 608 |
. . . 4
|
| 17 | ineq12 3400 |
. . . . 5
| |
| 18 | 17 | eqeq1d 2238 |
. . . 4
|
| 19 | 16, 18 | anbi12d 473 |
. . 3
|
| 20 | 11, 13, 19 | spc2ev 2899 |
. 2
|
| 21 | 8, 9, 20 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-1o 6562 df-en 6888 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |