ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  endisj Unicode version

Theorem endisj 6647
Description: Any two sets are equinumerous to disjoint sets. Exercise 4.39 of [Mendelson] p. 255. (Contributed by NM, 16-Apr-2004.)
Hypotheses
Ref Expression
endisj.1  |-  A  e. 
_V
endisj.2  |-  B  e. 
_V
Assertion
Ref Expression
endisj  |-  E. x E. y ( ( x 
~~  A  /\  y  ~~  B )  /\  (
x  i^i  y )  =  (/) )
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem endisj
StepHypRef Expression
1 endisj.1 . . . 4  |-  A  e. 
_V
2 0ex 3995 . . . 4  |-  (/)  e.  _V
31, 2xpsnen 6644 . . 3  |-  ( A  X.  { (/) } ) 
~~  A
4 endisj.2 . . . 4  |-  B  e. 
_V
5 1on 6250 . . . . 5  |-  1o  e.  On
65elexi 2653 . . . 4  |-  1o  e.  _V
74, 6xpsnen 6644 . . 3  |-  ( B  X.  { 1o }
)  ~~  B
83, 7pm3.2i 268 . 2  |-  ( ( A  X.  { (/) } )  ~~  A  /\  ( B  X.  { 1o } )  ~~  B
)
9 xp01disj 6260 . 2  |-  ( ( A  X.  { (/) } )  i^i  ( B  X.  { 1o }
) )  =  (/)
10 p0ex 4052 . . . 4  |-  { (/) }  e.  _V
111, 10xpex 4592 . . 3  |-  ( A  X.  { (/) } )  e.  _V
126snex 4049 . . . 4  |-  { 1o }  e.  _V
134, 12xpex 4592 . . 3  |-  ( B  X.  { 1o }
)  e.  _V
14 breq1 3878 . . . . 5  |-  ( x  =  ( A  X.  { (/) } )  -> 
( x  ~~  A  <->  ( A  X.  { (/) } )  ~~  A ) )
15 breq1 3878 . . . . 5  |-  ( y  =  ( B  X.  { 1o } )  -> 
( y  ~~  B  <->  ( B  X.  { 1o } )  ~~  B
) )
1614, 15bi2anan9 576 . . . 4  |-  ( ( x  =  ( A  X.  { (/) } )  /\  y  =  ( B  X.  { 1o } ) )  -> 
( ( x  ~~  A  /\  y  ~~  B
)  <->  ( ( A  X.  { (/) } ) 
~~  A  /\  ( B  X.  { 1o }
)  ~~  B )
) )
17 ineq12 3219 . . . . 5  |-  ( ( x  =  ( A  X.  { (/) } )  /\  y  =  ( B  X.  { 1o } ) )  -> 
( x  i^i  y
)  =  ( ( A  X.  { (/) } )  i^i  ( B  X.  { 1o }
) ) )
1817eqeq1d 2108 . . . 4  |-  ( ( x  =  ( A  X.  { (/) } )  /\  y  =  ( B  X.  { 1o } ) )  -> 
( ( x  i^i  y )  =  (/)  <->  (
( A  X.  { (/)
} )  i^i  ( B  X.  { 1o }
) )  =  (/) ) )
1916, 18anbi12d 460 . . 3  |-  ( ( x  =  ( A  X.  { (/) } )  /\  y  =  ( B  X.  { 1o } ) )  -> 
( ( ( x 
~~  A  /\  y  ~~  B )  /\  (
x  i^i  y )  =  (/) )  <->  ( (
( A  X.  { (/)
} )  ~~  A  /\  ( B  X.  { 1o } )  ~~  B
)  /\  ( ( A  X.  { (/) } )  i^i  ( B  X.  { 1o } ) )  =  (/) ) ) )
2011, 13, 19spc2ev 2736 . 2  |-  ( ( ( ( A  X.  { (/) } )  ~~  A  /\  ( B  X.  { 1o } )  ~~  B )  /\  (
( A  X.  { (/)
} )  i^i  ( B  X.  { 1o }
) )  =  (/) )  ->  E. x E. y
( ( x  ~~  A  /\  y  ~~  B
)  /\  ( x  i^i  y )  =  (/) ) )
218, 9, 20mp2an 420 1  |-  E. x E. y ( ( x 
~~  A  /\  y  ~~  B )  /\  (
x  i^i  y )  =  (/) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1299   E.wex 1436    e. wcel 1448   _Vcvv 2641    i^i cin 3020   (/)c0 3310   {csn 3474   class class class wbr 3875   Oncon0 4223    X. cxp 4475   1oc1o 6236    ~~ cen 6562
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-v 2643  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-suc 4231  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-1o 6243  df-en 6565
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator