ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  endisj Unicode version

Theorem endisj 6983
Description: Any two sets are equinumerous to disjoint sets. Exercise 4.39 of [Mendelson] p. 255. (Contributed by NM, 16-Apr-2004.)
Hypotheses
Ref Expression
endisj.1  |-  A  e. 
_V
endisj.2  |-  B  e. 
_V
Assertion
Ref Expression
endisj  |-  E. x E. y ( ( x 
~~  A  /\  y  ~~  B )  /\  (
x  i^i  y )  =  (/) )
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem endisj
StepHypRef Expression
1 endisj.1 . . . 4  |-  A  e. 
_V
2 0ex 4211 . . . 4  |-  (/)  e.  _V
31, 2xpsnen 6980 . . 3  |-  ( A  X.  { (/) } ) 
~~  A
4 endisj.2 . . . 4  |-  B  e. 
_V
5 1on 6569 . . . . 5  |-  1o  e.  On
65elexi 2812 . . . 4  |-  1o  e.  _V
74, 6xpsnen 6980 . . 3  |-  ( B  X.  { 1o }
)  ~~  B
83, 7pm3.2i 272 . 2  |-  ( ( A  X.  { (/) } )  ~~  A  /\  ( B  X.  { 1o } )  ~~  B
)
9 xp01disj 6579 . 2  |-  ( ( A  X.  { (/) } )  i^i  ( B  X.  { 1o }
) )  =  (/)
10 p0ex 4272 . . . 4  |-  { (/) }  e.  _V
111, 10xpex 4834 . . 3  |-  ( A  X.  { (/) } )  e.  _V
126snex 4269 . . . 4  |-  { 1o }  e.  _V
134, 12xpex 4834 . . 3  |-  ( B  X.  { 1o }
)  e.  _V
14 breq1 4086 . . . . 5  |-  ( x  =  ( A  X.  { (/) } )  -> 
( x  ~~  A  <->  ( A  X.  { (/) } )  ~~  A ) )
15 breq1 4086 . . . . 5  |-  ( y  =  ( B  X.  { 1o } )  -> 
( y  ~~  B  <->  ( B  X.  { 1o } )  ~~  B
) )
1614, 15bi2anan9 608 . . . 4  |-  ( ( x  =  ( A  X.  { (/) } )  /\  y  =  ( B  X.  { 1o } ) )  -> 
( ( x  ~~  A  /\  y  ~~  B
)  <->  ( ( A  X.  { (/) } ) 
~~  A  /\  ( B  X.  { 1o }
)  ~~  B )
) )
17 ineq12 3400 . . . . 5  |-  ( ( x  =  ( A  X.  { (/) } )  /\  y  =  ( B  X.  { 1o } ) )  -> 
( x  i^i  y
)  =  ( ( A  X.  { (/) } )  i^i  ( B  X.  { 1o }
) ) )
1817eqeq1d 2238 . . . 4  |-  ( ( x  =  ( A  X.  { (/) } )  /\  y  =  ( B  X.  { 1o } ) )  -> 
( ( x  i^i  y )  =  (/)  <->  (
( A  X.  { (/)
} )  i^i  ( B  X.  { 1o }
) )  =  (/) ) )
1916, 18anbi12d 473 . . 3  |-  ( ( x  =  ( A  X.  { (/) } )  /\  y  =  ( B  X.  { 1o } ) )  -> 
( ( ( x 
~~  A  /\  y  ~~  B )  /\  (
x  i^i  y )  =  (/) )  <->  ( (
( A  X.  { (/)
} )  ~~  A  /\  ( B  X.  { 1o } )  ~~  B
)  /\  ( ( A  X.  { (/) } )  i^i  ( B  X.  { 1o } ) )  =  (/) ) ) )
2011, 13, 19spc2ev 2899 . 2  |-  ( ( ( ( A  X.  { (/) } )  ~~  A  /\  ( B  X.  { 1o } )  ~~  B )  /\  (
( A  X.  { (/)
} )  i^i  ( B  X.  { 1o }
) )  =  (/) )  ->  E. x E. y
( ( x  ~~  A  /\  y  ~~  B
)  /\  ( x  i^i  y )  =  (/) ) )
218, 9, 20mp2an 426 1  |-  E. x E. y ( ( x 
~~  A  /\  y  ~~  B )  /\  (
x  i^i  y )  =  (/) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395   E.wex 1538    e. wcel 2200   _Vcvv 2799    i^i cin 3196   (/)c0 3491   {csn 3666   class class class wbr 4083   Oncon0 4454    X. cxp 4717   1oc1o 6555    ~~ cen 6885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-1o 6562  df-en 6888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator