| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > endisj | Unicode version | ||
| Description: Any two sets are equinumerous to disjoint sets. Exercise 4.39 of [Mendelson] p. 255. (Contributed by NM, 16-Apr-2004.) |
| Ref | Expression |
|---|---|
| endisj.1 |
|
| endisj.2 |
|
| Ref | Expression |
|---|---|
| endisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | endisj.1 |
. . . 4
| |
| 2 | 0ex 4187 |
. . . 4
| |
| 3 | 1, 2 | xpsnen 6941 |
. . 3
|
| 4 | endisj.2 |
. . . 4
| |
| 5 | 1on 6532 |
. . . . 5
| |
| 6 | 5 | elexi 2789 |
. . . 4
|
| 7 | 4, 6 | xpsnen 6941 |
. . 3
|
| 8 | 3, 7 | pm3.2i 272 |
. 2
|
| 9 | xp01disj 6542 |
. 2
| |
| 10 | p0ex 4248 |
. . . 4
| |
| 11 | 1, 10 | xpex 4808 |
. . 3
|
| 12 | 6 | snex 4245 |
. . . 4
|
| 13 | 4, 12 | xpex 4808 |
. . 3
|
| 14 | breq1 4062 |
. . . . 5
| |
| 15 | breq1 4062 |
. . . . 5
| |
| 16 | 14, 15 | bi2anan9 606 |
. . . 4
|
| 17 | ineq12 3377 |
. . . . 5
| |
| 18 | 17 | eqeq1d 2216 |
. . . 4
|
| 19 | 16, 18 | anbi12d 473 |
. . 3
|
| 20 | 11, 13, 19 | spc2ev 2876 |
. 2
|
| 21 | 8, 9, 20 | mp2an 426 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-1o 6525 df-en 6851 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |