Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spcev | Unicode version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) |
Ref | Expression |
---|---|
spcv.1 | |
spcv.2 |
Ref | Expression |
---|---|
spcev |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcv.1 | . 2 | |
2 | spcv.2 | . . 3 | |
3 | 2 | spcegv 2818 | . 2 |
4 | 1, 3 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 wex 1485 wcel 2141 cvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 |
This theorem is referenced by: bnd2 4157 mss 4209 exss 4210 snnex 4431 opeldm 4812 elrnmpt1 4860 xpmlem 5029 ffoss 5472 ssimaex 5555 fvelrn 5624 eufnfv 5723 foeqcnvco 5766 cnvoprab 6210 domtr 6759 ensn1 6770 ac6sfi 6872 difinfsn 7073 0ct 7080 ctmlemr 7081 ctssdclemn0 7083 ctssdclemr 7085 ctssdc 7086 omct 7090 ctssexmid 7122 exmidfodomrlemim 7165 cc3 7217 zfz1iso 10763 fprodntrivap 11534 ennnfonelemim 12366 ctinfom 12370 ctinf 12372 qnnen 12373 enctlem 12374 ctiunct 12382 nninfdc 12395 subctctexmid 13956 |
Copyright terms: Public domain | W3C validator |