| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spcev | Unicode version | ||
| Description: Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) |
| Ref | Expression |
|---|---|
| spcv.1 |
|
| spcv.2 |
|
| Ref | Expression |
|---|---|
| spcev |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcv.1 |
. 2
| |
| 2 | spcv.2 |
. . 3
| |
| 3 | 2 | spcegv 2891 |
. 2
|
| 4 | 1, 3 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 |
| This theorem is referenced by: bnd2 4257 mss 4312 exss 4313 snnex 4539 opeldm 4926 elrnmpt1 4975 xpmlem 5149 ffoss 5604 ssimaex 5695 fvelrn 5766 funopsn 5817 eufnfv 5870 foeqcnvco 5914 cnvoprab 6380 domtr 6937 ensn1 6948 ac6sfi 7060 difinfsn 7267 0ct 7274 ctmlemr 7275 ctssdclemn0 7277 ctssdclemr 7279 ctssdc 7280 omct 7284 ctssexmid 7317 exmidfodomrlemim 7379 cc3 7454 zfz1iso 11063 fprodntrivap 12095 nninfct 12562 ennnfonelemim 12995 ctinfom 12999 ctinf 13001 qnnen 13002 enctlem 13003 ctiunct 13011 nninfdc 13024 subctctexmid 16366 domomsubct 16367 |
| Copyright terms: Public domain | W3C validator |