| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spcev | Unicode version | ||
| Description: Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) |
| Ref | Expression |
|---|---|
| spcv.1 |
|
| spcv.2 |
|
| Ref | Expression |
|---|---|
| spcev |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcv.1 |
. 2
| |
| 2 | spcv.2 |
. . 3
| |
| 3 | 2 | spcegv 2868 |
. 2
|
| 4 | 1, 3 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 |
| This theorem is referenced by: bnd2 4233 mss 4288 exss 4289 snnex 4513 opeldm 4900 elrnmpt1 4948 xpmlem 5122 ffoss 5576 ssimaex 5663 fvelrn 5734 funopsn 5785 eufnfv 5838 foeqcnvco 5882 cnvoprab 6343 domtr 6900 ensn1 6911 ac6sfi 7021 difinfsn 7228 0ct 7235 ctmlemr 7236 ctssdclemn0 7238 ctssdclemr 7240 ctssdc 7241 omct 7245 ctssexmid 7278 exmidfodomrlemim 7340 cc3 7415 zfz1iso 11023 fprodntrivap 12010 nninfct 12477 ennnfonelemim 12910 ctinfom 12914 ctinf 12916 qnnen 12917 enctlem 12918 ctiunct 12926 nninfdc 12939 subctctexmid 16139 domomsubct 16140 |
| Copyright terms: Public domain | W3C validator |