| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spcev | Unicode version | ||
| Description: Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) |
| Ref | Expression |
|---|---|
| spcv.1 |
|
| spcv.2 |
|
| Ref | Expression |
|---|---|
| spcev |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcv.1 |
. 2
| |
| 2 | spcv.2 |
. . 3
| |
| 3 | 2 | spcegv 2861 |
. 2
|
| 4 | 1, 3 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 |
| This theorem is referenced by: bnd2 4217 mss 4270 exss 4271 snnex 4495 opeldm 4881 elrnmpt1 4929 xpmlem 5103 ffoss 5554 ssimaex 5640 fvelrn 5711 funopsn 5762 eufnfv 5815 foeqcnvco 5859 cnvoprab 6320 domtr 6877 ensn1 6888 ac6sfi 6995 difinfsn 7202 0ct 7209 ctmlemr 7210 ctssdclemn0 7212 ctssdclemr 7214 ctssdc 7215 omct 7219 ctssexmid 7252 exmidfodomrlemim 7309 cc3 7380 zfz1iso 10986 fprodntrivap 11895 nninfct 12362 ennnfonelemim 12795 ctinfom 12799 ctinf 12801 qnnen 12802 enctlem 12803 ctiunct 12811 nninfdc 12824 subctctexmid 15941 domomsubct 15942 |
| Copyright terms: Public domain | W3C validator |