| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spcev | Unicode version | ||
| Description: Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) |
| Ref | Expression |
|---|---|
| spcv.1 |
|
| spcv.2 |
|
| Ref | Expression |
|---|---|
| spcev |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcv.1 |
. 2
| |
| 2 | spcv.2 |
. . 3
| |
| 3 | 2 | spcegv 2861 |
. 2
|
| 4 | 1, 3 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 |
| This theorem is referenced by: bnd2 4218 mss 4271 exss 4272 snnex 4496 opeldm 4882 elrnmpt1 4930 xpmlem 5104 ffoss 5556 ssimaex 5642 fvelrn 5713 funopsn 5764 eufnfv 5817 foeqcnvco 5861 cnvoprab 6322 domtr 6879 ensn1 6890 ac6sfi 6997 difinfsn 7204 0ct 7211 ctmlemr 7212 ctssdclemn0 7214 ctssdclemr 7216 ctssdc 7217 omct 7221 ctssexmid 7254 exmidfodomrlemim 7311 cc3 7382 zfz1iso 10988 fprodntrivap 11928 nninfct 12395 ennnfonelemim 12828 ctinfom 12832 ctinf 12834 qnnen 12835 enctlem 12836 ctiunct 12844 nninfdc 12857 subctctexmid 15974 domomsubct 15975 |
| Copyright terms: Public domain | W3C validator |