Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spcev | Unicode version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) |
Ref | Expression |
---|---|
spcv.1 | |
spcv.2 |
Ref | Expression |
---|---|
spcev |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcv.1 | . 2 | |
2 | spcv.2 | . . 3 | |
3 | 2 | spcegv 2818 | . 2 |
4 | 1, 3 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 wex 1485 wcel 2141 cvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 |
This theorem is referenced by: bnd2 4159 mss 4211 exss 4212 snnex 4433 opeldm 4814 elrnmpt1 4862 xpmlem 5031 ffoss 5474 ssimaex 5557 fvelrn 5627 eufnfv 5726 foeqcnvco 5769 cnvoprab 6213 domtr 6763 ensn1 6774 ac6sfi 6876 difinfsn 7077 0ct 7084 ctmlemr 7085 ctssdclemn0 7087 ctssdclemr 7089 ctssdc 7090 omct 7094 ctssexmid 7126 exmidfodomrlemim 7178 cc3 7230 zfz1iso 10776 fprodntrivap 11547 ennnfonelemim 12379 ctinfom 12383 ctinf 12385 qnnen 12386 enctlem 12387 ctiunct 12395 nninfdc 12408 subctctexmid 14034 |
Copyright terms: Public domain | W3C validator |