ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcegft GIF version

Theorem spcegft 2831
Description: A closed version of spcegf 2835. (Contributed by Jim Kingdon, 22-Jun-2018.)
Hypotheses
Ref Expression
spcimgft.1 𝑥𝜓
spcimgft.2 𝑥𝐴
Assertion
Ref Expression
spcegft (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (𝜓 → ∃𝑥𝜑)))

Proof of Theorem spcegft
StepHypRef Expression
1 biimpr 130 . . . 4 ((𝜑𝜓) → (𝜓𝜑))
21imim2i 12 . . 3 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → (𝜓𝜑)))
32alimi 1466 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥(𝑥 = 𝐴 → (𝜓𝜑)))
4 spcimgft.1 . . 3 𝑥𝜓
5 spcimgft.2 . . 3 𝑥𝐴
64, 5spcimegft 2830 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜑)) → (𝐴𝐵 → (𝜓 → ∃𝑥𝜑)))
73, 6syl 14 1 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (𝜓 → ∃𝑥𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362   = wceq 1364  wnf 1471  wex 1503  wcel 2160  wnfc 2319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754
This theorem is referenced by:  spcegf  2835
  Copyright terms: Public domain W3C validator