ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcegft GIF version

Theorem spcegft 2809
Description: A closed version of spcegf 2813. (Contributed by Jim Kingdon, 22-Jun-2018.)
Hypotheses
Ref Expression
spcimgft.1 𝑥𝜓
spcimgft.2 𝑥𝐴
Assertion
Ref Expression
spcegft (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (𝜓 → ∃𝑥𝜑)))

Proof of Theorem spcegft
StepHypRef Expression
1 biimpr 129 . . . 4 ((𝜑𝜓) → (𝜓𝜑))
21imim2i 12 . . 3 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → (𝜓𝜑)))
32alimi 1448 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥(𝑥 = 𝐴 → (𝜓𝜑)))
4 spcimgft.1 . . 3 𝑥𝜓
5 spcimgft.2 . . 3 𝑥𝐴
64, 5spcimegft 2808 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜑)) → (𝐴𝐵 → (𝜓 → ∃𝑥𝜑)))
73, 6syl 14 1 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (𝜓 → ∃𝑥𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1346   = wceq 1348  wnf 1453  wex 1485  wcel 2141  wnfc 2299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732
This theorem is referenced by:  spcegf  2813
  Copyright terms: Public domain W3C validator