Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spcegft | GIF version |
Description: A closed version of spcegf 2809. (Contributed by Jim Kingdon, 22-Jun-2018.) |
Ref | Expression |
---|---|
spcimgft.1 | ⊢ Ⅎ𝑥𝜓 |
spcimgft.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
spcegft | ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝐴 ∈ 𝐵 → (𝜓 → ∃𝑥𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpr 129 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
2 | 1 | imim2i 12 | . . 3 ⊢ ((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝑥 = 𝐴 → (𝜓 → 𝜑))) |
3 | 2 | alimi 1443 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → ∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜑))) |
4 | spcimgft.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
5 | spcimgft.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
6 | 4, 5 | spcimegft 2804 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜑)) → (𝐴 ∈ 𝐵 → (𝜓 → ∃𝑥𝜑))) |
7 | 3, 6 | syl 14 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝐴 ∈ 𝐵 → (𝜓 → ∃𝑥𝜑))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1341 = wceq 1343 Ⅎwnf 1448 ∃wex 1480 ∈ wcel 2136 Ⅎwnfc 2295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 |
This theorem is referenced by: spcegf 2809 |
Copyright terms: Public domain | W3C validator |