ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcimegft Unicode version

Theorem spcimegft 2858
Description: A closed version of spcimegf 2861. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimgft.1  |-  F/ x ps
spcimgft.2  |-  F/_ x A
Assertion
Ref Expression
spcimegft  |-  ( A. x ( x  =  A  ->  ( ps  ->  ph ) )  -> 
( A  e.  B  ->  ( ps  ->  E. x ph ) ) )

Proof of Theorem spcimegft
StepHypRef Expression
1 elex 2788 . 2  |-  ( A  e.  B  ->  A  e.  _V )
2 spcimgft.2 . . . . 5  |-  F/_ x A
32issetf 2784 . . . 4  |-  ( A  e.  _V  <->  E. x  x  =  A )
4 exim 1623 . . . 4  |-  ( A. x ( x  =  A  ->  ( ps  ->  ph ) )  -> 
( E. x  x  =  A  ->  E. x
( ps  ->  ph )
) )
53, 4biimtrid 152 . . 3  |-  ( A. x ( x  =  A  ->  ( ps  ->  ph ) )  -> 
( A  e.  _V  ->  E. x ( ps 
->  ph ) ) )
6 spcimgft.1 . . . 4  |-  F/ x ps
7619.37-1 1698 . . 3  |-  ( E. x ( ps  ->  ph )  ->  ( ps  ->  E. x ph )
)
85, 7syl6 33 . 2  |-  ( A. x ( x  =  A  ->  ( ps  ->  ph ) )  -> 
( A  e.  _V  ->  ( ps  ->  E. x ph ) ) )
91, 8syl5 32 1  |-  ( A. x ( x  =  A  ->  ( ps  ->  ph ) )  -> 
( A  e.  B  ->  ( ps  ->  E. x ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371    = wceq 1373   F/wnf 1484   E.wex 1516    e. wcel 2178   F/_wnfc 2337   _Vcvv 2776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778
This theorem is referenced by:  spcegft  2859  spcimegf  2861  spcimedv  2866
  Copyright terms: Public domain W3C validator