ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcimegft Unicode version

Theorem spcimegft 2804
Description: A closed version of spcimegf 2807. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimgft.1  |-  F/ x ps
spcimgft.2  |-  F/_ x A
Assertion
Ref Expression
spcimegft  |-  ( A. x ( x  =  A  ->  ( ps  ->  ph ) )  -> 
( A  e.  B  ->  ( ps  ->  E. x ph ) ) )

Proof of Theorem spcimegft
StepHypRef Expression
1 elex 2737 . 2  |-  ( A  e.  B  ->  A  e.  _V )
2 spcimgft.2 . . . . 5  |-  F/_ x A
32issetf 2733 . . . 4  |-  ( A  e.  _V  <->  E. x  x  =  A )
4 exim 1587 . . . 4  |-  ( A. x ( x  =  A  ->  ( ps  ->  ph ) )  -> 
( E. x  x  =  A  ->  E. x
( ps  ->  ph )
) )
53, 4syl5bi 151 . . 3  |-  ( A. x ( x  =  A  ->  ( ps  ->  ph ) )  -> 
( A  e.  _V  ->  E. x ( ps 
->  ph ) ) )
6 spcimgft.1 . . . 4  |-  F/ x ps
7619.37-1 1662 . . 3  |-  ( E. x ( ps  ->  ph )  ->  ( ps  ->  E. x ph )
)
85, 7syl6 33 . 2  |-  ( A. x ( x  =  A  ->  ( ps  ->  ph ) )  -> 
( A  e.  _V  ->  ( ps  ->  E. x ph ) ) )
91, 8syl5 32 1  |-  ( A. x ( x  =  A  ->  ( ps  ->  ph ) )  -> 
( A  e.  B  ->  ( ps  ->  E. x ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1341    = wceq 1343   F/wnf 1448   E.wex 1480    e. wcel 2136   F/_wnfc 2295   _Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728
This theorem is referenced by:  spcegft  2805  spcimegf  2807  spcimedv  2812
  Copyright terms: Public domain W3C validator