ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcgft Unicode version

Theorem spcgft 2812
Description: A closed version of spcgf 2817. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimgft.1  |-  F/ x ps
spcimgft.2  |-  F/_ x A
Assertion
Ref Expression
spcgft  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  ( A  e.  B  ->  ( A. x ph  ->  ps ) ) )

Proof of Theorem spcgft
StepHypRef Expression
1 biimp 118 . . . 4  |-  ( (
ph 
<->  ps )  ->  ( ph  ->  ps ) )
21imim2i 12 . . 3  |-  ( ( x  =  A  -> 
( ph  <->  ps ) )  -> 
( x  =  A  ->  ( ph  ->  ps ) ) )
32alimi 1453 . 2  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  A. x
( x  =  A  ->  ( ph  ->  ps ) ) )
4 spcimgft.1 . . 3  |-  F/ x ps
5 spcimgft.2 . . 3  |-  F/_ x A
64, 5spcimgft 2811 . 2  |-  ( A. x ( x  =  A  ->  ( ph  ->  ps ) )  -> 
( A  e.  B  ->  ( A. x ph  ->  ps ) ) )
73, 6syl 14 1  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  ( A  e.  B  ->  ( A. x ph  ->  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1351    = wceq 1353   F/wnf 1458    e. wcel 2146   F/_wnfc 2304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737
This theorem is referenced by:  spcgf  2817  rspct  2832
  Copyright terms: Public domain W3C validator