ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcgf Unicode version

Theorem spcgf 2808
Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 2-Feb-1997.) (Revised by Andrew Salmon, 12-Aug-2011.)
Hypotheses
Ref Expression
spcgf.1  |-  F/_ x A
spcgf.2  |-  F/ x ps
spcgf.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
spcgf  |-  ( A  e.  V  ->  ( A. x ph  ->  ps ) )

Proof of Theorem spcgf
StepHypRef Expression
1 spcgf.2 . . 3  |-  F/ x ps
2 spcgf.1 . . 3  |-  F/_ x A
31, 2spcgft 2803 . 2  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  ( A  e.  V  ->  ( A. x ph  ->  ps ) ) )
4 spcgf.3 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
53, 4mpg 1439 1  |-  ( A  e.  V  ->  ( A. x ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341    = wceq 1343   F/wnf 1448    e. wcel 2136   F/_wnfc 2295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728
This theorem is referenced by:  spcgv  2813  rspc  2824  elabgt  2867  eusvnf  4431  mpofvex  6171
  Copyright terms: Public domain W3C validator