ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcgf Unicode version

Theorem spcgf 2885
Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 2-Feb-1997.) (Revised by Andrew Salmon, 12-Aug-2011.)
Hypotheses
Ref Expression
spcgf.1  |-  F/_ x A
spcgf.2  |-  F/ x ps
spcgf.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
spcgf  |-  ( A  e.  V  ->  ( A. x ph  ->  ps ) )

Proof of Theorem spcgf
StepHypRef Expression
1 spcgf.2 . . 3  |-  F/ x ps
2 spcgf.1 . . 3  |-  F/_ x A
31, 2spcgft 2880 . 2  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  ( A  e.  V  ->  ( A. x ph  ->  ps ) ) )
4 spcgf.3 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
53, 4mpg 1497 1  |-  ( A  e.  V  ->  ( A. x ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1393    = wceq 1395   F/wnf 1506    e. wcel 2200   F/_wnfc 2359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801
This theorem is referenced by:  spcgv  2890  rspc  2901  elabgt  2944  eusvnf  4544  mpofvex  6351  gropd  15848  grstructd2dom  15849
  Copyright terms: Public domain W3C validator