ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcimedv GIF version

Theorem spcimedv 2866
Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimdv.1 (𝜑𝐴𝐵)
spcimedv.2 ((𝜑𝑥 = 𝐴) → (𝜒𝜓))
Assertion
Ref Expression
spcimedv (𝜑 → (𝜒 → ∃𝑥𝜓))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐵(𝑥)

Proof of Theorem spcimedv
StepHypRef Expression
1 spcimedv.2 . . . 4 ((𝜑𝑥 = 𝐴) → (𝜒𝜓))
21ex 115 . . 3 (𝜑 → (𝑥 = 𝐴 → (𝜒𝜓)))
32alrimiv 1898 . 2 (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜒𝜓)))
4 spcimdv.1 . 2 (𝜑𝐴𝐵)
5 nfv 1552 . . 3 𝑥𝜒
6 nfcv 2350 . . 3 𝑥𝐴
75, 6spcimegft 2858 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜒𝜓)) → (𝐴𝐵 → (𝜒 → ∃𝑥𝜓)))
83, 4, 7sylc 62 1 (𝜑 → (𝜒 → ∃𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1371   = wceq 1373  wex 1516  wcel 2178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778
This theorem is referenced by:  rspcimedv  2886  fihashf1rn  10970
  Copyright terms: Public domain W3C validator