ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcimedv GIF version

Theorem spcimedv 2825
Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimdv.1 (𝜑𝐴𝐵)
spcimedv.2 ((𝜑𝑥 = 𝐴) → (𝜒𝜓))
Assertion
Ref Expression
spcimedv (𝜑 → (𝜒 → ∃𝑥𝜓))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐵(𝑥)

Proof of Theorem spcimedv
StepHypRef Expression
1 spcimedv.2 . . . 4 ((𝜑𝑥 = 𝐴) → (𝜒𝜓))
21ex 115 . . 3 (𝜑 → (𝑥 = 𝐴 → (𝜒𝜓)))
32alrimiv 1874 . 2 (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜒𝜓)))
4 spcimdv.1 . 2 (𝜑𝐴𝐵)
5 nfv 1528 . . 3 𝑥𝜒
6 nfcv 2319 . . 3 𝑥𝐴
75, 6spcimegft 2817 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜒𝜓)) → (𝐴𝐵 → (𝜒 → ∃𝑥𝜓)))
83, 4, 7sylc 62 1 (𝜑 → (𝜒 → ∃𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1351   = wceq 1353  wex 1492  wcel 2148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741
This theorem is referenced by:  rspcimedv  2845  fihashf1rn  10771
  Copyright terms: Public domain W3C validator