![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > spcimedv | GIF version |
Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
spcimdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
spcimedv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) |
Ref | Expression |
---|---|
spcimedv | ⊢ (𝜑 → (𝜒 → ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcimedv.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) | |
2 | 1 | ex 115 | . . 3 ⊢ (𝜑 → (𝑥 = 𝐴 → (𝜒 → 𝜓))) |
3 | 2 | alrimiv 1885 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜒 → 𝜓))) |
4 | spcimdv.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
5 | nfv 1539 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
6 | nfcv 2336 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
7 | 5, 6 | spcimegft 2838 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜒 → 𝜓)) → (𝐴 ∈ 𝐵 → (𝜒 → ∃𝑥𝜓))) |
8 | 3, 4, 7 | sylc 62 | 1 ⊢ (𝜑 → (𝜒 → ∃𝑥𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 = wceq 1364 ∃wex 1503 ∈ wcel 2164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 |
This theorem is referenced by: rspcimedv 2866 fihashf1rn 10859 |
Copyright terms: Public domain | W3C validator |