| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spcimedv | GIF version | ||
| Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| spcimdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| spcimedv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) |
| Ref | Expression |
|---|---|
| spcimedv | ⊢ (𝜑 → (𝜒 → ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcimedv.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) | |
| 2 | 1 | ex 115 | . . 3 ⊢ (𝜑 → (𝑥 = 𝐴 → (𝜒 → 𝜓))) |
| 3 | 2 | alrimiv 1898 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜒 → 𝜓))) |
| 4 | spcimdv.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 5 | nfv 1552 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
| 6 | nfcv 2350 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 7 | 5, 6 | spcimegft 2858 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜒 → 𝜓)) → (𝐴 ∈ 𝐵 → (𝜒 → ∃𝑥𝜓))) |
| 8 | 3, 4, 7 | sylc 62 | 1 ⊢ (𝜑 → (𝜒 → ∃𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1371 = wceq 1373 ∃wex 1516 ∈ wcel 2178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 |
| This theorem is referenced by: rspcimedv 2886 fihashf1rn 10970 |
| Copyright terms: Public domain | W3C validator |