ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcimedv Unicode version

Theorem rspcimedv 2845
Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rspcimdv.1  |-  ( ph  ->  A  e.  B )
rspcimedv.2  |-  ( (
ph  /\  x  =  A )  ->  ( ch  ->  ps ) )
Assertion
Ref Expression
rspcimedv  |-  ( ph  ->  ( ch  ->  E. x  e.  B  ps )
)
Distinct variable groups:    x, A    x, B    ph, x    ch, x
Allowed substitution hint:    ps( x)

Proof of Theorem rspcimedv
StepHypRef Expression
1 rspcimdv.1 . . 3  |-  ( ph  ->  A  e.  B )
2 simpr 110 . . . . . . 7  |-  ( (
ph  /\  x  =  A )  ->  x  =  A )
32eleq1d 2246 . . . . . 6  |-  ( (
ph  /\  x  =  A )  ->  (
x  e.  B  <->  A  e.  B ) )
43biimprd 158 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  ( A  e.  B  ->  x  e.  B ) )
5 rspcimedv.2 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  ( ch  ->  ps ) )
64, 5anim12d 335 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  (
( A  e.  B  /\  ch )  ->  (
x  e.  B  /\  ps ) ) )
71, 6spcimedv 2825 . . 3  |-  ( ph  ->  ( ( A  e.  B  /\  ch )  ->  E. x ( x  e.  B  /\  ps ) ) )
81, 7mpand 429 . 2  |-  ( ph  ->  ( ch  ->  E. x
( x  e.  B  /\  ps ) ) )
9 df-rex 2461 . 2  |-  ( E. x  e.  B  ps  <->  E. x ( x  e.  B  /\  ps )
)
108, 9imbitrrdi 162 1  |-  ( ph  ->  ( ch  ->  E. x  e.  B  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   E.wex 1492    e. wcel 2148   E.wrex 2456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741
This theorem is referenced by:  rspcedv  2847
  Copyright terms: Public domain W3C validator