Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspcimedv | Unicode version |
Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rspcimdv.1 | |
rspcimedv.2 |
Ref | Expression |
---|---|
rspcimedv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcimdv.1 | . . 3 | |
2 | simpr 109 | . . . . . . 7 | |
3 | 2 | eleq1d 2235 | . . . . . 6 |
4 | 3 | biimprd 157 | . . . . 5 |
5 | rspcimedv.2 | . . . . 5 | |
6 | 4, 5 | anim12d 333 | . . . 4 |
7 | 1, 6 | spcimedv 2812 | . . 3 |
8 | 1, 7 | mpand 426 | . 2 |
9 | df-rex 2450 | . 2 | |
10 | 8, 9 | syl6ibr 161 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wex 1480 wcel 2136 wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 |
This theorem is referenced by: rspcedv 2834 |
Copyright terms: Public domain | W3C validator |