| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspcimedv | Unicode version | ||
| Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| rspcimdv.1 |
|
| rspcimedv.2 |
|
| Ref | Expression |
|---|---|
| rspcimedv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcimdv.1 |
. . 3
| |
| 2 | simpr 110 |
. . . . . . 7
| |
| 3 | 2 | eleq1d 2265 |
. . . . . 6
|
| 4 | 3 | biimprd 158 |
. . . . 5
|
| 5 | rspcimedv.2 |
. . . . 5
| |
| 6 | 4, 5 | anim12d 335 |
. . . 4
|
| 7 | 1, 6 | spcimedv 2850 |
. . 3
|
| 8 | 1, 7 | mpand 429 |
. 2
|
| 9 | df-rex 2481 |
. 2
| |
| 10 | 8, 9 | imbitrrdi 162 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 |
| This theorem is referenced by: rspcedv 2872 |
| Copyright terms: Public domain | W3C validator |