Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spcgv | Unicode version |
Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.) |
Ref | Expression |
---|---|
spcgv.1 |
Ref | Expression |
---|---|
spcgv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2312 | . 2 | |
2 | nfv 1521 | . 2 | |
3 | spcgv.1 | . 2 | |
4 | 1, 2, 3 | spcgf 2812 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1346 wceq 1348 wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 |
This theorem is referenced by: spcv 2824 mob2 2910 intss1 3846 dfiin2g 3906 exmidsssnc 4189 frirrg 4335 frind 4337 alxfr 4446 elirr 4525 en2lp 4538 tfisi 4571 mptfvex 5581 tfrcl 6343 rdgisucinc 6364 frecabex 6377 fisseneq 6909 mkvprop 7134 exmidfodomrlemr 7179 exmidfodomrlemrALT 7180 acfun 7184 ccfunen 7226 zfz1isolem1 10775 zfz1iso 10776 uniopn 12793 exmid1stab 14033 pw1nct 14036 sbthom 14058 |
Copyright terms: Public domain | W3C validator |