ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcgv Unicode version

Theorem spcgv 2813
Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.)
Hypothesis
Ref Expression
spcgv.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
spcgv  |-  ( A  e.  V  ->  ( A. x ph  ->  ps ) )
Distinct variable groups:    ps, x    x, A
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem spcgv
StepHypRef Expression
1 nfcv 2308 . 2  |-  F/_ x A
2 nfv 1516 . 2  |-  F/ x ps
3 spcgv.1 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
41, 2, 3spcgf 2808 1  |-  ( A  e.  V  ->  ( A. x ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341    = wceq 1343    e. wcel 2136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728
This theorem is referenced by:  spcv  2820  mob2  2906  intss1  3839  dfiin2g  3899  exmidsssnc  4182  frirrg  4328  frind  4330  alxfr  4439  elirr  4518  en2lp  4531  tfisi  4564  mptfvex  5571  tfrcl  6332  rdgisucinc  6353  frecabex  6366  fisseneq  6897  mkvprop  7122  exmidfodomrlemr  7158  exmidfodomrlemrALT  7159  acfun  7163  ccfunen  7205  zfz1isolem1  10753  zfz1iso  10754  uniopn  12639  exmid1stab  13880  pw1nct  13883  sbthom  13905
  Copyright terms: Public domain W3C validator