| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spcgv | Unicode version | ||
| Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.) |
| Ref | Expression |
|---|---|
| spcgv.1 |
|
| Ref | Expression |
|---|---|
| spcgv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2350 |
. 2
| |
| 2 | nfv 1552 |
. 2
| |
| 3 | spcgv.1 |
. 2
| |
| 4 | 1, 2, 3 | spcgf 2862 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 |
| This theorem is referenced by: spcv 2874 mob2 2960 intss1 3914 dfiin2g 3974 exmidsssnc 4263 exmid1stab 4268 frirrg 4415 frind 4417 alxfr 4526 elirr 4607 en2lp 4620 tfisi 4653 mptfvex 5688 tfrcl 6473 rdgisucinc 6494 frecabex 6507 fisseneq 7057 mkvprop 7286 exmidfodomrlemr 7341 exmidfodomrlemrALT 7342 acfun 7350 exmidmotap 7408 ccfunen 7411 zfz1isolem1 11022 zfz1iso 11023 uniopn 14588 pw1nct 16142 sbthom 16167 |
| Copyright terms: Public domain | W3C validator |