| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spcgv | Unicode version | ||
| Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.) |
| Ref | Expression |
|---|---|
| spcgv.1 |
|
| Ref | Expression |
|---|---|
| spcgv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2372 |
. 2
| |
| 2 | nfv 1574 |
. 2
| |
| 3 | spcgv.1 |
. 2
| |
| 4 | 1, 2, 3 | spcgf 2885 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 |
| This theorem is referenced by: spcv 2897 mob2 2983 intss1 3938 dfiin2g 3998 exmidsssnc 4287 exmid1stab 4292 frirrg 4441 frind 4443 alxfr 4552 elirr 4633 en2lp 4646 tfisi 4679 mptfvex 5720 tfrcl 6510 rdgisucinc 6531 frecabex 6544 fisseneq 7096 mkvprop 7325 exmidfodomrlemr 7380 exmidfodomrlemrALT 7381 acfun 7389 exmidmotap 7447 ccfunen 7450 zfz1isolem1 11062 zfz1iso 11063 uniopn 14675 pw1nct 16369 sbthom 16394 |
| Copyright terms: Public domain | W3C validator |