ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fihashf1rn Unicode version

Theorem fihashf1rn 10723
Description: The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Jim Kingdon, 21-Feb-2022.)
Assertion
Ref Expression
fihashf1rn  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  ( `  F )  =  ( `  ran  F ) )

Proof of Theorem fihashf1rn
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 f1fn 5405 . . 3  |-  ( F : A -1-1-> B  ->  F  Fn  A )
2 simpl 108 . . 3  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  A  e.  Fin )
3 fnfi 6914 . . 3  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  F  e.  Fin )
41, 2, 3syl2an2 589 . 2  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  F  e.  Fin )
5 f1o2ndf1 6207 . . . 4  |-  ( F : A -1-1-> B  -> 
( 2nd  |`  F ) : F -1-1-onto-> ran  F )
6 df-2nd 6120 . . . . . . . . 9  |-  2nd  =  ( x  e.  _V  |->  U.
ran  { x } )
76funmpt2 5237 . . . . . . . 8  |-  Fun  2nd
8 f1f 5403 . . . . . . . . . . 11  |-  ( F : A -1-1-> B  ->  F : A --> B )
98anim2i 340 . . . . . . . . . 10  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  ( A  e. 
Fin  /\  F : A
--> B ) )
109ancomd 265 . . . . . . . . 9  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  ( F : A
--> B  /\  A  e. 
Fin ) )
11 fex 5725 . . . . . . . . 9  |-  ( ( F : A --> B  /\  A  e.  Fin )  ->  F  e.  _V )
1210, 11syl 14 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  F  e.  _V )
13 resfunexg 5717 . . . . . . . 8  |-  ( ( Fun  2nd  /\  F  e. 
_V )  ->  ( 2nd  |`  F )  e. 
_V )
147, 12, 13sylancr 412 . . . . . . 7  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  ( 2nd  |`  F )  e.  _V )
15 f1oeq1 5431 . . . . . . . . . 10  |-  ( ( 2nd  |`  F )  =  f  ->  ( ( 2nd  |`  F ) : F -1-1-onto-> ran  F  <->  f : F
-1-1-onto-> ran  F ) )
1615biimpd 143 . . . . . . . . 9  |-  ( ( 2nd  |`  F )  =  f  ->  ( ( 2nd  |`  F ) : F -1-1-onto-> ran  F  ->  f : F -1-1-onto-> ran  F ) )
1716eqcoms 2173 . . . . . . . 8  |-  ( f  =  ( 2nd  |`  F )  ->  ( ( 2nd  |`  F ) : F -1-1-onto-> ran  F  ->  f : F -1-1-onto-> ran  F ) )
1817adantl 275 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  F : A -1-1-> B
)  /\  f  =  ( 2nd  |`  F )
)  ->  ( ( 2nd  |`  F ) : F -1-1-onto-> ran  F  ->  f : F -1-1-onto-> ran  F ) )
1914, 18spcimedv 2816 . . . . . 6  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  ( ( 2nd  |`  F ) : F -1-1-onto-> ran  F  ->  E. f  f : F -1-1-onto-> ran  F ) )
2019ex 114 . . . . 5  |-  ( A  e.  Fin  ->  ( F : A -1-1-> B  -> 
( ( 2nd  |`  F ) : F -1-1-onto-> ran  F  ->  E. f 
f : F -1-1-onto-> ran  F
) ) )
2120com13 80 . . . 4  |-  ( ( 2nd  |`  F ) : F -1-1-onto-> ran  F  ->  ( F : A -1-1-> B  -> 
( A  e.  Fin  ->  E. f  f : F -1-1-onto-> ran  F ) ) )
225, 21mpcom 36 . . 3  |-  ( F : A -1-1-> B  -> 
( A  e.  Fin  ->  E. f  f : F -1-1-onto-> ran  F ) )
2322impcom 124 . 2  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  E. f  f : F -1-1-onto-> ran  F )
24 fihasheqf1oi 10722 . . . 4  |-  ( ( F  e.  Fin  /\  f : F -1-1-onto-> ran  F )  -> 
( `  F )  =  ( `  ran  F ) )
2524ex 114 . . 3  |-  ( F  e.  Fin  ->  (
f : F -1-1-onto-> ran  F  ->  ( `  F )  =  ( `  ran  F ) ) )
2625exlimdv 1812 . 2  |-  ( F  e.  Fin  ->  ( E. f  f : F
-1-1-onto-> ran  F  ->  ( `  F
)  =  ( `  ran  F ) ) )
274, 23, 26sylc 62 1  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  ( `  F )  =  ( `  ran  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348   E.wex 1485    e. wcel 2141   _Vcvv 2730   {csn 3583   U.cuni 3796   ran crn 4612    |` cres 4613   Fun wfun 5192    Fn wfn 5193   -->wf 5194   -1-1->wf1 5195   -1-1-onto->wf1o 5197   ` cfv 5198   2ndc2nd 6118   Fincfn 6718  ♯chash 10709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-ihash 10710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator