ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fihashf1rn Unicode version

Theorem fihashf1rn 10702
Description: The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Jim Kingdon, 21-Feb-2022.)
Assertion
Ref Expression
fihashf1rn  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  ( `  F )  =  ( `  ran  F ) )

Proof of Theorem fihashf1rn
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 f1fn 5395 . . 3  |-  ( F : A -1-1-> B  ->  F  Fn  A )
2 simpl 108 . . 3  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  A  e.  Fin )
3 fnfi 6902 . . 3  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  F  e.  Fin )
41, 2, 3syl2an2 584 . 2  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  F  e.  Fin )
5 f1o2ndf1 6196 . . . 4  |-  ( F : A -1-1-> B  -> 
( 2nd  |`  F ) : F -1-1-onto-> ran  F )
6 df-2nd 6109 . . . . . . . . 9  |-  2nd  =  ( x  e.  _V  |->  U.
ran  { x } )
76funmpt2 5227 . . . . . . . 8  |-  Fun  2nd
8 f1f 5393 . . . . . . . . . . 11  |-  ( F : A -1-1-> B  ->  F : A --> B )
98anim2i 340 . . . . . . . . . 10  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  ( A  e. 
Fin  /\  F : A
--> B ) )
109ancomd 265 . . . . . . . . 9  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  ( F : A
--> B  /\  A  e. 
Fin ) )
11 fex 5714 . . . . . . . . 9  |-  ( ( F : A --> B  /\  A  e.  Fin )  ->  F  e.  _V )
1210, 11syl 14 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  F  e.  _V )
13 resfunexg 5706 . . . . . . . 8  |-  ( ( Fun  2nd  /\  F  e. 
_V )  ->  ( 2nd  |`  F )  e. 
_V )
147, 12, 13sylancr 411 . . . . . . 7  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  ( 2nd  |`  F )  e.  _V )
15 f1oeq1 5421 . . . . . . . . . 10  |-  ( ( 2nd  |`  F )  =  f  ->  ( ( 2nd  |`  F ) : F -1-1-onto-> ran  F  <->  f : F
-1-1-onto-> ran  F ) )
1615biimpd 143 . . . . . . . . 9  |-  ( ( 2nd  |`  F )  =  f  ->  ( ( 2nd  |`  F ) : F -1-1-onto-> ran  F  ->  f : F -1-1-onto-> ran  F ) )
1716eqcoms 2168 . . . . . . . 8  |-  ( f  =  ( 2nd  |`  F )  ->  ( ( 2nd  |`  F ) : F -1-1-onto-> ran  F  ->  f : F -1-1-onto-> ran  F ) )
1817adantl 275 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  F : A -1-1-> B
)  /\  f  =  ( 2nd  |`  F )
)  ->  ( ( 2nd  |`  F ) : F -1-1-onto-> ran  F  ->  f : F -1-1-onto-> ran  F ) )
1914, 18spcimedv 2812 . . . . . 6  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  ( ( 2nd  |`  F ) : F -1-1-onto-> ran  F  ->  E. f  f : F -1-1-onto-> ran  F ) )
2019ex 114 . . . . 5  |-  ( A  e.  Fin  ->  ( F : A -1-1-> B  -> 
( ( 2nd  |`  F ) : F -1-1-onto-> ran  F  ->  E. f 
f : F -1-1-onto-> ran  F
) ) )
2120com13 80 . . . 4  |-  ( ( 2nd  |`  F ) : F -1-1-onto-> ran  F  ->  ( F : A -1-1-> B  -> 
( A  e.  Fin  ->  E. f  f : F -1-1-onto-> ran  F ) ) )
225, 21mpcom 36 . . 3  |-  ( F : A -1-1-> B  -> 
( A  e.  Fin  ->  E. f  f : F -1-1-onto-> ran  F ) )
2322impcom 124 . 2  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  E. f  f : F -1-1-onto-> ran  F )
24 fihasheqf1oi 10701 . . . 4  |-  ( ( F  e.  Fin  /\  f : F -1-1-onto-> ran  F )  -> 
( `  F )  =  ( `  ran  F ) )
2524ex 114 . . 3  |-  ( F  e.  Fin  ->  (
f : F -1-1-onto-> ran  F  ->  ( `  F )  =  ( `  ran  F ) ) )
2625exlimdv 1807 . 2  |-  ( F  e.  Fin  ->  ( E. f  f : F
-1-1-onto-> ran  F  ->  ( `  F
)  =  ( `  ran  F ) ) )
274, 23, 26sylc 62 1  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  ( `  F )  =  ( `  ran  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   E.wex 1480    e. wcel 2136   _Vcvv 2726   {csn 3576   U.cuni 3789   ran crn 4605    |` cres 4606   Fun wfun 5182    Fn wfn 5183   -->wf 5184   -1-1->wf1 5185   -1-1-onto->wf1o 5187   ` cfv 5188   2ndc2nd 6107   Fincfn 6706  ♯chash 10688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-2nd 6109  df-recs 6273  df-frec 6359  df-1o 6384  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-ihash 10689
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator