ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fihashf1rn Unicode version

Theorem fihashf1rn 10880
Description: The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Jim Kingdon, 21-Feb-2022.)
Assertion
Ref Expression
fihashf1rn  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  ( `  F )  =  ( `  ran  F ) )

Proof of Theorem fihashf1rn
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 f1fn 5465 . . 3  |-  ( F : A -1-1-> B  ->  F  Fn  A )
2 simpl 109 . . 3  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  A  e.  Fin )
3 fnfi 7002 . . 3  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  F  e.  Fin )
41, 2, 3syl2an2 594 . 2  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  F  e.  Fin )
5 f1o2ndf1 6286 . . . 4  |-  ( F : A -1-1-> B  -> 
( 2nd  |`  F ) : F -1-1-onto-> ran  F )
6 df-2nd 6199 . . . . . . . . 9  |-  2nd  =  ( x  e.  _V  |->  U.
ran  { x } )
76funmpt2 5297 . . . . . . . 8  |-  Fun  2nd
8 f1f 5463 . . . . . . . . . . 11  |-  ( F : A -1-1-> B  ->  F : A --> B )
98anim2i 342 . . . . . . . . . 10  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  ( A  e. 
Fin  /\  F : A
--> B ) )
109ancomd 267 . . . . . . . . 9  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  ( F : A
--> B  /\  A  e. 
Fin ) )
11 fex 5791 . . . . . . . . 9  |-  ( ( F : A --> B  /\  A  e.  Fin )  ->  F  e.  _V )
1210, 11syl 14 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  F  e.  _V )
13 resfunexg 5783 . . . . . . . 8  |-  ( ( Fun  2nd  /\  F  e. 
_V )  ->  ( 2nd  |`  F )  e. 
_V )
147, 12, 13sylancr 414 . . . . . . 7  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  ( 2nd  |`  F )  e.  _V )
15 f1oeq1 5492 . . . . . . . . . 10  |-  ( ( 2nd  |`  F )  =  f  ->  ( ( 2nd  |`  F ) : F -1-1-onto-> ran  F  <->  f : F
-1-1-onto-> ran  F ) )
1615biimpd 144 . . . . . . . . 9  |-  ( ( 2nd  |`  F )  =  f  ->  ( ( 2nd  |`  F ) : F -1-1-onto-> ran  F  ->  f : F -1-1-onto-> ran  F ) )
1716eqcoms 2199 . . . . . . . 8  |-  ( f  =  ( 2nd  |`  F )  ->  ( ( 2nd  |`  F ) : F -1-1-onto-> ran  F  ->  f : F -1-1-onto-> ran  F ) )
1817adantl 277 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  F : A -1-1-> B
)  /\  f  =  ( 2nd  |`  F )
)  ->  ( ( 2nd  |`  F ) : F -1-1-onto-> ran  F  ->  f : F -1-1-onto-> ran  F ) )
1914, 18spcimedv 2850 . . . . . 6  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  ( ( 2nd  |`  F ) : F -1-1-onto-> ran  F  ->  E. f  f : F -1-1-onto-> ran  F ) )
2019ex 115 . . . . 5  |-  ( A  e.  Fin  ->  ( F : A -1-1-> B  -> 
( ( 2nd  |`  F ) : F -1-1-onto-> ran  F  ->  E. f 
f : F -1-1-onto-> ran  F
) ) )
2120com13 80 . . . 4  |-  ( ( 2nd  |`  F ) : F -1-1-onto-> ran  F  ->  ( F : A -1-1-> B  -> 
( A  e.  Fin  ->  E. f  f : F -1-1-onto-> ran  F ) ) )
225, 21mpcom 36 . . 3  |-  ( F : A -1-1-> B  -> 
( A  e.  Fin  ->  E. f  f : F -1-1-onto-> ran  F ) )
2322impcom 125 . 2  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  E. f  f : F -1-1-onto-> ran  F )
24 fihasheqf1oi 10879 . . . 4  |-  ( ( F  e.  Fin  /\  f : F -1-1-onto-> ran  F )  -> 
( `  F )  =  ( `  ran  F ) )
2524ex 115 . . 3  |-  ( F  e.  Fin  ->  (
f : F -1-1-onto-> ran  F  ->  ( `  F )  =  ( `  ran  F ) ) )
2625exlimdv 1833 . 2  |-  ( F  e.  Fin  ->  ( E. f  f : F
-1-1-onto-> ran  F  ->  ( `  F
)  =  ( `  ran  F ) ) )
274, 23, 26sylc 62 1  |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  ( `  F )  =  ( `  ran  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1506    e. wcel 2167   _Vcvv 2763   {csn 3622   U.cuni 3839   ran crn 4664    |` cres 4665   Fun wfun 5252    Fn wfn 5253   -->wf 5254   -1-1->wf1 5255   -1-1-onto->wf1o 5257   ` cfv 5258   2ndc2nd 6197   Fincfn 6799  ♯chash 10867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-ihash 10868
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator