| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim2d | Unicode version | ||
| Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| anim1d.1 |
|
| Ref | Expression |
|---|---|
| anim2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 21 |
. 2
| |
| 2 | anim1d.1 |
. 2
| |
| 3 | 1, 2 | anim12d 335 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: spsbim 1865 ssel 3186 sscon 3306 uniss 3870 trel3 4149 copsexg 4287 ssopab2 4320 coss1 4831 fununi 5336 imadif 5348 fss 5431 ssimaex 5634 opabbrex 5979 ssoprab2 5991 poxp 6308 pmss12g 6752 ss2ixp 6788 xpdom2 6908 qbtwnxr 10381 ioc0 10386 climshftlemg 11532 bezoutlembz 12244 tgcl 14454 neipsm 14544 ssnei2 14547 tgcnp 14599 cnpnei 14609 cnptopco 14612 mopni3 14874 limcresi 15056 cnlimcim 15061 |
| Copyright terms: Public domain | W3C validator |