| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim2d | Unicode version | ||
| Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| anim1d.1 |
|
| Ref | Expression |
|---|---|
| anim2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 21 |
. 2
| |
| 2 | anim1d.1 |
. 2
| |
| 3 | 1, 2 | anim12d 335 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: spsbim 1867 ssel 3191 sscon 3311 uniss 3877 trel3 4158 copsexg 4296 ssopab2 4330 coss1 4841 fununi 5351 imadif 5363 fss 5447 ssimaex 5653 opabbrex 6002 ssoprab2 6014 poxp 6331 pmss12g 6775 ss2ixp 6811 xpdom2 6941 qbtwnxr 10422 ioc0 10427 climshftlemg 11688 bezoutlembz 12400 tgcl 14611 neipsm 14701 ssnei2 14704 tgcnp 14756 cnpnei 14766 cnptopco 14769 mopni3 15031 limcresi 15213 cnlimcim 15218 |
| Copyright terms: Public domain | W3C validator |