| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim2d | Unicode version | ||
| Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| anim1d.1 |
|
| Ref | Expression |
|---|---|
| anim2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 21 |
. 2
| |
| 2 | anim1d.1 |
. 2
| |
| 3 | 1, 2 | anim12d 335 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: spsbim 1889 ssel 3218 sscon 3338 uniss 3908 trel3 4189 copsexg 4329 ssopab2 4363 coss1 4876 fununi 5388 imadif 5400 fss 5484 ssimaex 5694 opabbrex 6047 ssoprab2 6059 poxp 6376 pmss12g 6820 ss2ixp 6856 xpdom2 6986 qbtwnxr 10472 ioc0 10477 climshftlemg 11808 bezoutlembz 12520 tgcl 14732 neipsm 14822 ssnei2 14825 tgcnp 14877 cnpnei 14887 cnptopco 14890 mopni3 15152 limcresi 15334 cnlimcim 15339 |
| Copyright terms: Public domain | W3C validator |