ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anim2d Unicode version

Theorem anim2d 337
Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
anim1d.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
anim2d  |-  ( ph  ->  ( ( th  /\  ps )  ->  ( th 
/\  ch ) ) )

Proof of Theorem anim2d
StepHypRef Expression
1 idd 21 . 2  |-  ( ph  ->  ( th  ->  th )
)
2 anim1d.1 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
31, 2anim12d 335 1  |-  ( ph  ->  ( ( th  /\  ps )  ->  ( th 
/\  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  spsbim  1889  ssel  3218  sscon  3338  uniss  3908  trel3  4189  copsexg  4329  ssopab2  4363  coss1  4876  fununi  5388  imadif  5400  fss  5484  ssimaex  5694  opabbrex  6047  ssoprab2  6059  poxp  6376  pmss12g  6820  ss2ixp  6856  xpdom2  6986  qbtwnxr  10472  ioc0  10477  climshftlemg  11808  bezoutlembz  12520  tgcl  14732  neipsm  14822  ssnei2  14825  tgcnp  14877  cnpnei  14887  cnptopco  14890  mopni3  15152  limcresi  15334  cnlimcim  15339
  Copyright terms: Public domain W3C validator