ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anim2d Unicode version

Theorem anim2d 337
Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
anim1d.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
anim2d  |-  ( ph  ->  ( ( th  /\  ps )  ->  ( th 
/\  ch ) ) )

Proof of Theorem anim2d
StepHypRef Expression
1 idd 21 . 2  |-  ( ph  ->  ( th  ->  th )
)
2 anim1d.1 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
31, 2anim12d 335 1  |-  ( ph  ->  ( ( th  /\  ps )  ->  ( th 
/\  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  spsbim  1865  ssel  3186  sscon  3306  uniss  3870  trel3  4149  copsexg  4287  ssopab2  4321  coss1  4832  fununi  5341  imadif  5353  fss  5436  ssimaex  5639  opabbrex  5988  ssoprab2  6000  poxp  6317  pmss12g  6761  ss2ixp  6797  xpdom2  6925  qbtwnxr  10398  ioc0  10403  climshftlemg  11555  bezoutlembz  12267  tgcl  14478  neipsm  14568  ssnei2  14571  tgcnp  14623  cnpnei  14633  cnptopco  14636  mopni3  14898  limcresi  15080  cnlimcim  15085
  Copyright terms: Public domain W3C validator