| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim2d | Unicode version | ||
| Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| anim1d.1 |
|
| Ref | Expression |
|---|---|
| anim2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 21 |
. 2
| |
| 2 | anim1d.1 |
. 2
| |
| 3 | 1, 2 | anim12d 335 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: spsbim 1865 ssel 3186 sscon 3306 uniss 3870 trel3 4149 copsexg 4287 ssopab2 4321 coss1 4832 fununi 5341 imadif 5353 fss 5436 ssimaex 5639 opabbrex 5988 ssoprab2 6000 poxp 6317 pmss12g 6761 ss2ixp 6797 xpdom2 6925 qbtwnxr 10398 ioc0 10403 climshftlemg 11555 bezoutlembz 12267 tgcl 14478 neipsm 14568 ssnei2 14571 tgcnp 14623 cnpnei 14633 cnptopco 14636 mopni3 14898 limcresi 15080 cnlimcim 15085 |
| Copyright terms: Public domain | W3C validator |