| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > anim2d | Unicode version | ||
| Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| anim1d.1 | 
 | 
| Ref | Expression | 
|---|---|
| anim2d | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | idd 21 | 
. 2
 | |
| 2 | anim1d.1 | 
. 2
 | |
| 3 | 1, 2 | anim12d 335 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: spsbim 1857 ssel 3177 sscon 3297 uniss 3860 trel3 4139 copsexg 4277 ssopab2 4310 coss1 4821 fununi 5326 imadif 5338 fss 5419 ssimaex 5622 opabbrex 5966 ssoprab2 5978 poxp 6290 pmss12g 6734 ss2ixp 6770 xpdom2 6890 qbtwnxr 10347 ioc0 10352 climshftlemg 11467 bezoutlembz 12171 tgcl 14300 neipsm 14390 ssnei2 14393 tgcnp 14445 cnpnei 14455 cnptopco 14458 mopni3 14720 limcresi 14902 cnlimcim 14907 | 
| Copyright terms: Public domain | W3C validator |