ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anim2d Unicode version

Theorem anim2d 335
Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
anim1d.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
anim2d  |-  ( ph  ->  ( ( th  /\  ps )  ->  ( th 
/\  ch ) ) )

Proof of Theorem anim2d
StepHypRef Expression
1 idd 21 . 2  |-  ( ph  ->  ( th  ->  th )
)
2 anim1d.1 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
31, 2anim12d 333 1  |-  ( ph  ->  ( ( th  /\  ps )  ->  ( th 
/\  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  spsbim  1831  ssel  3136  sscon  3256  uniss  3810  trel3  4088  copsexg  4222  ssopab2  4253  coss1  4759  fununi  5256  imadif  5268  fss  5349  ssimaex  5547  opabbrex  5886  ssoprab2  5898  poxp  6200  pmss12g  6641  ss2ixp  6677  xpdom2  6797  qbtwnxr  10193  ioc0  10198  climshftlemg  11243  bezoutlembz  11937  tgcl  12704  neipsm  12794  ssnei2  12797  tgcnp  12849  cnpnei  12859  cnptopco  12862  mopni3  13124  limcresi  13275  cnlimcim  13280
  Copyright terms: Public domain W3C validator