ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldisj Unicode version

Theorem reldisj 3502
Description: Two ways of saying that two classes are disjoint, using the complement of  B relative to a universe  C. (Contributed by NM, 15-Feb-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
reldisj  |-  ( A 
C_  C  ->  (
( A  i^i  B
)  =  (/)  <->  A  C_  ( C  \  B ) ) )

Proof of Theorem reldisj
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dfss2 3172 . . . 4  |-  ( A 
C_  C  <->  A. x
( x  e.  A  ->  x  e.  C ) )
2 pm5.44 926 . . . . . 6  |-  ( ( x  e.  A  ->  x  e.  C )  ->  ( ( x  e.  A  ->  -.  x  e.  B )  <->  ( x  e.  A  ->  ( x  e.  C  /\  -.  x  e.  B )
) ) )
3 eldif 3166 . . . . . . 7  |-  ( x  e.  ( C  \  B )  <->  ( x  e.  C  /\  -.  x  e.  B ) )
43imbi2i 226 . . . . . 6  |-  ( ( x  e.  A  ->  x  e.  ( C  \  B ) )  <->  ( x  e.  A  ->  ( x  e.  C  /\  -.  x  e.  B )
) )
52, 4bitr4di 198 . . . . 5  |-  ( ( x  e.  A  ->  x  e.  C )  ->  ( ( x  e.  A  ->  -.  x  e.  B )  <->  ( x  e.  A  ->  x  e.  ( C  \  B
) ) ) )
65sps 1551 . . . 4  |-  ( A. x ( x  e.  A  ->  x  e.  C )  ->  (
( x  e.  A  ->  -.  x  e.  B
)  <->  ( x  e.  A  ->  x  e.  ( C  \  B ) ) ) )
71, 6sylbi 121 . . 3  |-  ( A 
C_  C  ->  (
( x  e.  A  ->  -.  x  e.  B
)  <->  ( x  e.  A  ->  x  e.  ( C  \  B ) ) ) )
87albidv 1838 . 2  |-  ( A 
C_  C  ->  ( A. x ( x  e.  A  ->  -.  x  e.  B )  <->  A. x
( x  e.  A  ->  x  e.  ( C 
\  B ) ) ) )
9 disj1 3501 . 2  |-  ( ( A  i^i  B )  =  (/)  <->  A. x ( x  e.  A  ->  -.  x  e.  B )
)
10 dfss2 3172 . 2  |-  ( A 
C_  ( C  \  B )  <->  A. x
( x  e.  A  ->  x  e.  ( C 
\  B ) ) )
118, 9, 103bitr4g 223 1  |-  ( A 
C_  C  ->  (
( A  i^i  B
)  =  (/)  <->  A  C_  ( C  \  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364    e. wcel 2167    \ cdif 3154    i^i cin 3156    C_ wss 3157   (/)c0 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3451
This theorem is referenced by:  disj2  3506  ssdifsn  3750  structcnvcnv  12694
  Copyright terms: Public domain W3C validator