| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reldisj | Unicode version | ||
| Description: Two ways of saying that
two classes are disjoint, using the complement
of |
| Ref | Expression |
|---|---|
| reldisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3185 |
. . . 4
| |
| 2 | pm5.44 927 |
. . . . . 6
| |
| 3 | eldif 3179 |
. . . . . . 7
| |
| 4 | 3 | imbi2i 226 |
. . . . . 6
|
| 5 | 2, 4 | bitr4di 198 |
. . . . 5
|
| 6 | 5 | sps 1561 |
. . . 4
|
| 7 | 1, 6 | sylbi 121 |
. . 3
|
| 8 | 7 | albidv 1848 |
. 2
|
| 9 | disj1 3515 |
. 2
| |
| 10 | ssalel 3185 |
. 2
| |
| 11 | 8, 9, 10 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-dif 3172 df-in 3176 df-ss 3183 df-nul 3465 |
| This theorem is referenced by: disj2 3520 ssdifsn 3767 structcnvcnv 12923 |
| Copyright terms: Public domain | W3C validator |