ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifsni Unicode version

Theorem eldifsni 3773
Description: Membership in a set with an element removed. (Contributed by NM, 10-Mar-2015.)
Assertion
Ref Expression
eldifsni  |-  ( A  e.  ( B  \  { C } )  ->  A  =/=  C )

Proof of Theorem eldifsni
StepHypRef Expression
1 eldifsn 3771 . 2  |-  ( A  e.  ( B  \  { C } )  <->  ( A  e.  B  /\  A  =/= 
C ) )
21simprbi 275 1  |-  ( A  e.  ( B  \  { C } )  ->  A  =/=  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178    =/= wne 2378    \ cdif 3171   {csn 3643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-v 2778  df-dif 3176  df-sn 3649
This theorem is referenced by:  neldifsn  3774  suppssfv  6177  suppssov1  6178  elfi2  7100  fiuni  7106  fifo  7108  en2other2  7335  oddprm  12697  ringelnzr  14064  lgslem1  15592  lgseisenlem2  15663  lgseisenlem4  15665  lgseisen  15666  lgsquadlem1  15669  lgsquad2  15675  m1lgs  15677
  Copyright terms: Public domain W3C validator