| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eldifsni | Unicode version | ||
| Description: Membership in a set with an element removed. (Contributed by NM, 10-Mar-2015.) |
| Ref | Expression |
|---|---|
| eldifsni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn 3771 |
. 2
| |
| 2 | 1 | simprbi 275 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-v 2778 df-dif 3176 df-sn 3649 |
| This theorem is referenced by: neldifsn 3774 suppssfv 6177 suppssov1 6178 elfi2 7100 fiuni 7106 fifo 7108 en2other2 7335 oddprm 12697 ringelnzr 14064 lgslem1 15592 lgseisenlem2 15663 lgseisenlem4 15665 lgseisen 15666 lgsquadlem1 15669 lgsquad2 15675 m1lgs 15677 |
| Copyright terms: Public domain | W3C validator |