ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifsni Unicode version

Theorem eldifsni 3748
Description: Membership in a set with an element removed. (Contributed by NM, 10-Mar-2015.)
Assertion
Ref Expression
eldifsni  |-  ( A  e.  ( B  \  { C } )  ->  A  =/=  C )

Proof of Theorem eldifsni
StepHypRef Expression
1 eldifsn 3746 . 2  |-  ( A  e.  ( B  \  { C } )  <->  ( A  e.  B  /\  A  =/= 
C ) )
21simprbi 275 1  |-  ( A  e.  ( B  \  { C } )  ->  A  =/=  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164    =/= wne 2364    \ cdif 3151   {csn 3619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-v 2762  df-dif 3156  df-sn 3625
This theorem is referenced by:  neldifsn  3749  suppssfv  6128  suppssov1  6129  elfi2  7033  fiuni  7039  fifo  7041  en2other2  7258  oddprm  12400  ringelnzr  13686  lgslem1  15157  lgseisenlem2  15228  lgseisenlem4  15230  lgseisen  15231  lgsquadlem1  15234  lgsquad2  15240  m1lgs  15242
  Copyright terms: Public domain W3C validator