ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifsni Unicode version

Theorem eldifsni 3577
Description: Membership in a set with an element removed. (Contributed by NM, 10-Mar-2015.)
Assertion
Ref Expression
eldifsni  |-  ( A  e.  ( B  \  { C } )  ->  A  =/=  C )

Proof of Theorem eldifsni
StepHypRef Expression
1 eldifsn 3575 . 2  |-  ( A  e.  ( B  \  { C } )  <->  ( A  e.  B  /\  A  =/= 
C ) )
21simprbi 270 1  |-  ( A  e.  ( B  \  { C } )  ->  A  =/=  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1439    =/= wne 2256    \ cdif 2999   {csn 3452
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-v 2624  df-dif 3004  df-sn 3458
This theorem is referenced by:  neldifsn  3578  suppssfv  5868  suppssov1  5869  en2other2  6885
  Copyright terms: Public domain W3C validator