ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssmin Unicode version

Theorem ssmin 3713
Description: Subclass of the minimum value of class of supersets. (Contributed by NM, 10-Aug-2006.)
Assertion
Ref Expression
ssmin  |-  A  C_  |^|
{ x  |  ( A  C_  x  /\  ph ) }
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem ssmin
StepHypRef Expression
1 ssintab 3711 . 2  |-  ( A 
C_  |^| { x  |  ( A  C_  x  /\  ph ) }  <->  A. x
( ( A  C_  x  /\  ph )  ->  A  C_  x ) )
2 simpl 108 . 2  |-  ( ( A  C_  x  /\  ph )  ->  A  C_  x
)
31, 2mpgbir 1388 1  |-  A  C_  |^|
{ x  |  ( A  C_  x  /\  ph ) }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   {cab 2075    C_ wss 3000   |^|cint 3694
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-v 2622  df-in 3006  df-ss 3013  df-int 3695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator