ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssmin Unicode version

Theorem ssmin 3893
Description: Subclass of the minimum value of class of supersets. (Contributed by NM, 10-Aug-2006.)
Assertion
Ref Expression
ssmin  |-  A  C_  |^|
{ x  |  ( A  C_  x  /\  ph ) }
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem ssmin
StepHypRef Expression
1 ssintab 3891 . 2  |-  ( A 
C_  |^| { x  |  ( A  C_  x  /\  ph ) }  <->  A. x
( ( A  C_  x  /\  ph )  ->  A  C_  x ) )
2 simpl 109 . 2  |-  ( ( A  C_  x  /\  ph )  ->  A  C_  x
)
31, 2mpgbir 1467 1  |-  A  C_  |^|
{ x  |  ( A  C_  x  /\  ph ) }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   {cab 2182    C_ wss 3157   |^|cint 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-in 3163  df-ss 3170  df-int 3875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator