ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssmin GIF version

Theorem ssmin 3843
Description: Subclass of the minimum value of class of supersets. (Contributed by NM, 10-Aug-2006.)
Assertion
Ref Expression
ssmin 𝐴 {𝑥 ∣ (𝐴𝑥𝜑)}
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssmin
StepHypRef Expression
1 ssintab 3841 . 2 (𝐴 {𝑥 ∣ (𝐴𝑥𝜑)} ↔ ∀𝑥((𝐴𝑥𝜑) → 𝐴𝑥))
2 simpl 108 . 2 ((𝐴𝑥𝜑) → 𝐴𝑥)
31, 2mpgbir 1441 1 𝐴 {𝑥 ∣ (𝐴𝑥𝜑)}
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  {cab 2151  wss 3116   cint 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-in 3122  df-ss 3129  df-int 3825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator