ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssintub Unicode version

Theorem ssintub 3842
Description: Subclass of the least upper bound. (Contributed by NM, 8-Aug-2000.)
Assertion
Ref Expression
ssintub  |-  A  C_  |^|
{ x  e.  B  |  A  C_  x }
Distinct variable groups:    x, A    x, B

Proof of Theorem ssintub
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssint 3840 . 2  |-  ( A 
C_  |^| { x  e.  B  |  A  C_  x }  <->  A. y  e.  {
x  e.  B  |  A  C_  x } A  C_  y )
2 sseq2 3166 . . . 4  |-  ( x  =  y  ->  ( A  C_  x  <->  A  C_  y
) )
32elrab 2882 . . 3  |-  ( y  e.  { x  e.  B  |  A  C_  x }  <->  ( y  e.  B  /\  A  C_  y ) )
43simprbi 273 . 2  |-  ( y  e.  { x  e.  B  |  A  C_  x }  ->  A  C_  y )
51, 4mprgbir 2524 1  |-  A  C_  |^|
{ x  e.  B  |  A  C_  x }
Colors of variables: wff set class
Syntax hints:    e. wcel 2136   {crab 2448    C_ wss 3116   |^|cint 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rab 2453  df-v 2728  df-in 3122  df-ss 3129  df-int 3825
This theorem is referenced by:  intmin  3844  sscls  12760
  Copyright terms: Public domain W3C validator