ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssintab Unicode version

Theorem ssintab 3863
Description: Subclass of the intersection of a class abstraction. (Contributed by NM, 31-Jul-2006.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
ssintab  |-  ( A 
C_  |^| { x  | 
ph }  <->  A. x
( ph  ->  A  C_  x ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem ssintab
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssint 3862 . 2  |-  ( A 
C_  |^| { x  | 
ph }  <->  A. y  e.  { x  |  ph } A  C_  y )
2 sseq2 3181 . . 3  |-  ( y  =  x  ->  ( A  C_  y  <->  A  C_  x
) )
32ralab2 2903 . 2  |-  ( A. y  e.  { x  |  ph } A  C_  y 
<-> 
A. x ( ph  ->  A  C_  x )
)
41, 3bitri 184 1  |-  ( A 
C_  |^| { x  | 
ph }  <->  A. x
( ph  ->  A  C_  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1351   {cab 2163   A.wral 2455    C_ wss 3131   |^|cint 3846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-in 3137  df-ss 3144  df-int 3847
This theorem is referenced by:  ssmin  3865  ssintrab  3869  intmin4  3874  dfuzi  9365
  Copyright terms: Public domain W3C validator