Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intmin | Unicode version |
Description: Any member of a class is the smallest of those members that include it. (Contributed by NM, 13-Aug-2002.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
intmin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . . . 5 | |
2 | 1 | elintrab 3836 | . . . 4 |
3 | ssid 3162 | . . . . 5 | |
4 | sseq2 3166 | . . . . . . 7 | |
5 | eleq2 2230 | . . . . . . 7 | |
6 | 4, 5 | imbi12d 233 | . . . . . 6 |
7 | 6 | rspcv 2826 | . . . . 5 |
8 | 3, 7 | mpii 44 | . . . 4 |
9 | 2, 8 | syl5bi 151 | . . 3 |
10 | 9 | ssrdv 3148 | . 2 |
11 | ssintub 3842 | . . 3 | |
12 | 11 | a1i 9 | . 2 |
13 | 10, 12 | eqssd 3159 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 wral 2444 crab 2448 wss 3116 cint 3824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rab 2453 df-v 2728 df-in 3122 df-ss 3129 df-int 3825 |
This theorem is referenced by: intmin2 3850 bm2.5ii 4473 onsucmin 4484 cldcls 12764 |
Copyright terms: Public domain | W3C validator |