ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intmin Unicode version

Theorem intmin 3904
Description: Any member of a class is the smallest of those members that include it. (Contributed by NM, 13-Aug-2002.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
intmin  |-  ( A  e.  B  ->  |^| { x  e.  B  |  A  C_  x }  =  A )
Distinct variable groups:    x, A    x, B

Proof of Theorem intmin
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 2774 . . . . 5  |-  y  e. 
_V
21elintrab 3896 . . . 4  |-  ( y  e.  |^| { x  e.  B  |  A  C_  x }  <->  A. x  e.  B  ( A  C_  x  -> 
y  e.  x ) )
3 ssid 3212 . . . . 5  |-  A  C_  A
4 sseq2 3216 . . . . . . 7  |-  ( x  =  A  ->  ( A  C_  x  <->  A  C_  A
) )
5 eleq2 2268 . . . . . . 7  |-  ( x  =  A  ->  (
y  e.  x  <->  y  e.  A ) )
64, 5imbi12d 234 . . . . . 6  |-  ( x  =  A  ->  (
( A  C_  x  ->  y  e.  x )  <-> 
( A  C_  A  ->  y  e.  A ) ) )
76rspcv 2872 . . . . 5  |-  ( A  e.  B  ->  ( A. x  e.  B  ( A  C_  x  -> 
y  e.  x )  ->  ( A  C_  A  ->  y  e.  A
) ) )
83, 7mpii 44 . . . 4  |-  ( A  e.  B  ->  ( A. x  e.  B  ( A  C_  x  -> 
y  e.  x )  ->  y  e.  A
) )
92, 8biimtrid 152 . . 3  |-  ( A  e.  B  ->  (
y  e.  |^| { x  e.  B  |  A  C_  x }  ->  y  e.  A ) )
109ssrdv 3198 . 2  |-  ( A  e.  B  ->  |^| { x  e.  B  |  A  C_  x }  C_  A
)
11 ssintub 3902 . . 3  |-  A  C_  |^|
{ x  e.  B  |  A  C_  x }
1211a1i 9 . 2  |-  ( A  e.  B  ->  A  C_ 
|^| { x  e.  B  |  A  C_  x }
)
1310, 12eqssd 3209 1  |-  ( A  e.  B  ->  |^| { x  e.  B  |  A  C_  x }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175   A.wral 2483   {crab 2487    C_ wss 3165   |^|cint 3884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rab 2492  df-v 2773  df-in 3171  df-ss 3178  df-int 3885
This theorem is referenced by:  intmin2  3910  bm2.5ii  4543  onsucmin  4554  lspid  14101  cldcls  14528
  Copyright terms: Public domain W3C validator