Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  intmin Unicode version

Theorem intmin 3759
 Description: Any member of a class is the smallest of those members that include it. (Contributed by NM, 13-Aug-2002.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
intmin
Distinct variable groups:   ,   ,

Proof of Theorem intmin
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 vex 2661 . . . . 5
21elintrab 3751 . . . 4
3 ssid 3085 . . . . 5
4 sseq2 3089 . . . . . . 7
5 eleq2 2179 . . . . . . 7
64, 5imbi12d 233 . . . . . 6
76rspcv 2757 . . . . 5
83, 7mpii 44 . . . 4
92, 8syl5bi 151 . . 3
109ssrdv 3071 . 2
11 ssintub 3757 . . 3
1211a1i 9 . 2
1310, 12eqssd 3082 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1314   wcel 1463  wral 2391  crab 2395   wss 3039  cint 3739 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097 This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rab 2400  df-v 2660  df-in 3045  df-ss 3052  df-int 3740 This theorem is referenced by:  intmin2  3765  bm2.5ii  4380  onsucmin  4391  cldcls  12178
 Copyright terms: Public domain W3C validator