ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intmin Unicode version

Theorem intmin 3890
Description: Any member of a class is the smallest of those members that include it. (Contributed by NM, 13-Aug-2002.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
intmin  |-  ( A  e.  B  ->  |^| { x  e.  B  |  A  C_  x }  =  A )
Distinct variable groups:    x, A    x, B

Proof of Theorem intmin
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 2763 . . . . 5  |-  y  e. 
_V
21elintrab 3882 . . . 4  |-  ( y  e.  |^| { x  e.  B  |  A  C_  x }  <->  A. x  e.  B  ( A  C_  x  -> 
y  e.  x ) )
3 ssid 3199 . . . . 5  |-  A  C_  A
4 sseq2 3203 . . . . . . 7  |-  ( x  =  A  ->  ( A  C_  x  <->  A  C_  A
) )
5 eleq2 2257 . . . . . . 7  |-  ( x  =  A  ->  (
y  e.  x  <->  y  e.  A ) )
64, 5imbi12d 234 . . . . . 6  |-  ( x  =  A  ->  (
( A  C_  x  ->  y  e.  x )  <-> 
( A  C_  A  ->  y  e.  A ) ) )
76rspcv 2860 . . . . 5  |-  ( A  e.  B  ->  ( A. x  e.  B  ( A  C_  x  -> 
y  e.  x )  ->  ( A  C_  A  ->  y  e.  A
) ) )
83, 7mpii 44 . . . 4  |-  ( A  e.  B  ->  ( A. x  e.  B  ( A  C_  x  -> 
y  e.  x )  ->  y  e.  A
) )
92, 8biimtrid 152 . . 3  |-  ( A  e.  B  ->  (
y  e.  |^| { x  e.  B  |  A  C_  x }  ->  y  e.  A ) )
109ssrdv 3185 . 2  |-  ( A  e.  B  ->  |^| { x  e.  B  |  A  C_  x }  C_  A
)
11 ssintub 3888 . . 3  |-  A  C_  |^|
{ x  e.  B  |  A  C_  x }
1211a1i 9 . 2  |-  ( A  e.  B  ->  A  C_ 
|^| { x  e.  B  |  A  C_  x }
)
1310, 12eqssd 3196 1  |-  ( A  e.  B  ->  |^| { x  e.  B  |  A  C_  x }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   A.wral 2472   {crab 2476    C_ wss 3153   |^|cint 3870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rab 2481  df-v 2762  df-in 3159  df-ss 3166  df-int 3871
This theorem is referenced by:  intmin2  3896  bm2.5ii  4528  onsucmin  4539  lspid  13893  cldcls  14282
  Copyright terms: Public domain W3C validator