ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrmof Unicode version

Theorem ssrmof 3260
Description: "At most one" existential quantification restricted to a subclass. (Contributed by Thierry Arnoux, 8-Oct-2017.)
Hypotheses
Ref Expression
ssrexf.1  |-  F/_ x A
ssrexf.2  |-  F/_ x B
Assertion
Ref Expression
ssrmof  |-  ( A 
C_  B  ->  ( E* x  e.  B  ph 
->  E* x  e.  A  ph ) )

Proof of Theorem ssrmof
StepHypRef Expression
1 ssrexf.1 . . . . 5  |-  F/_ x A
2 ssrexf.2 . . . . 5  |-  F/_ x B
31, 2dfss2f 3188 . . . 4  |-  ( A 
C_  B  <->  A. x
( x  e.  A  ->  x  e.  B ) )
43biimpi 120 . . 3  |-  ( A 
C_  B  ->  A. x
( x  e.  A  ->  x  e.  B ) )
5 pm3.45 597 . . . 4  |-  ( ( x  e.  A  ->  x  e.  B )  ->  ( ( x  e.  A  /\  ph )  ->  ( x  e.  B  /\  ph ) ) )
65alimi 1479 . . 3  |-  ( A. x ( x  e.  A  ->  x  e.  B )  ->  A. x
( ( x  e.  A  /\  ph )  ->  ( x  e.  B  /\  ph ) ) )
7 moim 2119 . . 3  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  B  /\  ph )
)  ->  ( E* x ( x  e.  B  /\  ph )  ->  E* x ( x  e.  A  /\  ph ) ) )
84, 6, 73syl 17 . 2  |-  ( A 
C_  B  ->  ( E* x ( x  e.  B  /\  ph )  ->  E* x ( x  e.  A  /\  ph ) ) )
9 df-rmo 2493 . 2  |-  ( E* x  e.  B  ph  <->  E* x ( x  e.  B  /\  ph )
)
10 df-rmo 2493 . 2  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
118, 9, 103imtr4g 205 1  |-  ( A 
C_  B  ->  ( E* x  e.  B  ph 
->  E* x  e.  A  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371   E*wmo 2056    e. wcel 2177   F/_wnfc 2336   E*wrmo 2488    C_ wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rmo 2493  df-in 3176  df-ss 3183
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator