ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrmof Unicode version

Theorem ssrmof 3210
Description: "At most one" existential quantification restricted to a subclass. (Contributed by Thierry Arnoux, 8-Oct-2017.)
Hypotheses
Ref Expression
ssrexf.1  |-  F/_ x A
ssrexf.2  |-  F/_ x B
Assertion
Ref Expression
ssrmof  |-  ( A 
C_  B  ->  ( E* x  e.  B  ph 
->  E* x  e.  A  ph ) )

Proof of Theorem ssrmof
StepHypRef Expression
1 ssrexf.1 . . . . 5  |-  F/_ x A
2 ssrexf.2 . . . . 5  |-  F/_ x B
31, 2dfss2f 3138 . . . 4  |-  ( A 
C_  B  <->  A. x
( x  e.  A  ->  x  e.  B ) )
43biimpi 119 . . 3  |-  ( A 
C_  B  ->  A. x
( x  e.  A  ->  x  e.  B ) )
5 pm3.45 592 . . . 4  |-  ( ( x  e.  A  ->  x  e.  B )  ->  ( ( x  e.  A  /\  ph )  ->  ( x  e.  B  /\  ph ) ) )
65alimi 1448 . . 3  |-  ( A. x ( x  e.  A  ->  x  e.  B )  ->  A. x
( ( x  e.  A  /\  ph )  ->  ( x  e.  B  /\  ph ) ) )
7 moim 2083 . . 3  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  B  /\  ph )
)  ->  ( E* x ( x  e.  B  /\  ph )  ->  E* x ( x  e.  A  /\  ph ) ) )
84, 6, 73syl 17 . 2  |-  ( A 
C_  B  ->  ( E* x ( x  e.  B  /\  ph )  ->  E* x ( x  e.  A  /\  ph ) ) )
9 df-rmo 2456 . 2  |-  ( E* x  e.  B  ph  <->  E* x ( x  e.  B  /\  ph )
)
10 df-rmo 2456 . 2  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
118, 9, 103imtr4g 204 1  |-  ( A 
C_  B  ->  ( E* x  e.  B  ph 
->  E* x  e.  A  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1346   E*wmo 2020    e. wcel 2141   F/_wnfc 2299   E*wrmo 2451    C_ wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rmo 2456  df-in 3127  df-ss 3134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator