Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssrmof | Unicode version |
Description: "At most one" existential quantification restricted to a subclass. (Contributed by Thierry Arnoux, 8-Oct-2017.) |
Ref | Expression |
---|---|
ssrexf.1 | |
ssrexf.2 |
Ref | Expression |
---|---|
ssrmof |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexf.1 | . . . . 5 | |
2 | ssrexf.2 | . . . . 5 | |
3 | 1, 2 | dfss2f 3138 | . . . 4 |
4 | 3 | biimpi 119 | . . 3 |
5 | pm3.45 592 | . . . 4 | |
6 | 5 | alimi 1448 | . . 3 |
7 | moim 2083 | . . 3 | |
8 | 4, 6, 7 | 3syl 17 | . 2 |
9 | df-rmo 2456 | . 2 | |
10 | df-rmo 2456 | . 2 | |
11 | 8, 9, 10 | 3imtr4g 204 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1346 wmo 2020 wcel 2141 wnfc 2299 wrmo 2451 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rmo 2456 df-in 3127 df-ss 3134 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |