Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssrmof | Unicode version |
Description: "At most one" existential quantification restricted to a subclass. (Contributed by Thierry Arnoux, 8-Oct-2017.) |
Ref | Expression |
---|---|
ssrexf.1 | |
ssrexf.2 |
Ref | Expression |
---|---|
ssrmof |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexf.1 | . . . . 5 | |
2 | ssrexf.2 | . . . . 5 | |
3 | 1, 2 | dfss2f 3133 | . . . 4 |
4 | 3 | biimpi 119 | . . 3 |
5 | pm3.45 587 | . . . 4 | |
6 | 5 | alimi 1443 | . . 3 |
7 | moim 2078 | . . 3 | |
8 | 4, 6, 7 | 3syl 17 | . 2 |
9 | df-rmo 2452 | . 2 | |
10 | df-rmo 2452 | . 2 | |
11 | 8, 9, 10 | 3imtr4g 204 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1341 wmo 2015 wcel 2136 wnfc 2295 wrmo 2447 wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rmo 2452 df-in 3122 df-ss 3129 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |