| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssralv | Unicode version | ||
| Description: Quantification restricted to a subclass. (Contributed by NM, 11-Mar-2006.) |
| Ref | Expression |
|---|---|
| ssralv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3187 |
. . 3
| |
| 2 | 1 | imim1d 75 |
. 2
|
| 3 | 2 | ralimdv2 2576 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-ral 2489 df-in 3172 df-ss 3179 |
| This theorem is referenced by: iinss1 3939 poss 4346 sess2 4386 trssord 4428 funco 5312 funimaexglem 5358 isores3 5886 isoini2 5890 smores 6380 smores2 6382 tfrlem5 6402 resixp 6822 ac6sfi 6997 difinfinf 7205 peano5nnnn 8007 peano5nni 9041 caucvgre 11325 rexanuz 11332 cau3lem 11458 isumclim3 11767 fsumiun 11821 pcfac 12706 ctinf 12834 strsetsid 12898 imasaddfnlemg 13179 tgcn 14713 tgcnp 14714 cnss2 14732 cncnp 14735 sslm 14752 metrest 15011 rescncf 15086 suplociccex 15130 limcresi 15171 nninfsellemeq 15988 |
| Copyright terms: Public domain | W3C validator |