ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssralv Unicode version

Theorem ssralv 3257
Description: Quantification restricted to a subclass. (Contributed by NM, 11-Mar-2006.)
Assertion
Ref Expression
ssralv  |-  ( A 
C_  B  ->  ( A. x  e.  B  ph 
->  A. x  e.  A  ph ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem ssralv
StepHypRef Expression
1 ssel 3187 . . 3  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
21imim1d 75 . 2  |-  ( A 
C_  B  ->  (
( x  e.  B  ->  ph )  ->  (
x  e.  A  ->  ph ) ) )
32ralimdv2 2576 1  |-  ( A 
C_  B  ->  ( A. x  e.  B  ph 
->  A. x  e.  A  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176   A.wral 2484    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-ral 2489  df-in 3172  df-ss 3179
This theorem is referenced by:  iinss1  3939  poss  4345  sess2  4385  trssord  4427  funco  5311  funimaexglem  5357  isores3  5884  isoini2  5888  smores  6378  smores2  6380  tfrlem5  6400  resixp  6820  ac6sfi  6995  difinfinf  7203  peano5nnnn  8005  peano5nni  9039  caucvgre  11292  rexanuz  11299  cau3lem  11425  isumclim3  11734  fsumiun  11788  pcfac  12673  ctinf  12801  strsetsid  12865  imasaddfnlemg  13146  tgcn  14680  tgcnp  14681  cnss2  14699  cncnp  14702  sslm  14719  metrest  14978  rescncf  15053  suplociccex  15097  limcresi  15138  nninfsellemeq  15955
  Copyright terms: Public domain W3C validator