| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssralv | Unicode version | ||
| Description: Quantification restricted to a subclass. (Contributed by NM, 11-Mar-2006.) |
| Ref | Expression |
|---|---|
| ssralv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3195 |
. . 3
| |
| 2 | 1 | imim1d 75 |
. 2
|
| 3 | 2 | ralimdv2 2578 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-ral 2491 df-in 3180 df-ss 3187 |
| This theorem is referenced by: iinss1 3953 poss 4363 sess2 4403 trssord 4445 funco 5330 funimaexglem 5376 isores3 5907 isoini2 5911 smores 6401 smores2 6403 tfrlem5 6423 resixp 6843 ac6sfi 7021 difinfinf 7229 peano5nnnn 8040 peano5nni 9074 caucvgre 11407 rexanuz 11414 cau3lem 11540 isumclim3 11849 fsumiun 11903 pcfac 12788 ctinf 12916 strsetsid 12980 imasaddfnlemg 13261 tgcn 14795 tgcnp 14796 cnss2 14814 cncnp 14817 sslm 14834 metrest 15093 rescncf 15168 suplociccex 15212 limcresi 15253 nninfsellemeq 16153 |
| Copyright terms: Public domain | W3C validator |