ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssralv Unicode version

Theorem ssralv 3265
Description: Quantification restricted to a subclass. (Contributed by NM, 11-Mar-2006.)
Assertion
Ref Expression
ssralv  |-  ( A 
C_  B  ->  ( A. x  e.  B  ph 
->  A. x  e.  A  ph ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem ssralv
StepHypRef Expression
1 ssel 3195 . . 3  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
21imim1d 75 . 2  |-  ( A 
C_  B  ->  (
( x  e.  B  ->  ph )  ->  (
x  e.  A  ->  ph ) ) )
32ralimdv2 2578 1  |-  ( A 
C_  B  ->  ( A. x  e.  B  ph 
->  A. x  e.  A  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178   A.wral 2486    C_ wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-ral 2491  df-in 3180  df-ss 3187
This theorem is referenced by:  iinss1  3953  poss  4363  sess2  4403  trssord  4445  funco  5330  funimaexglem  5376  isores3  5907  isoini2  5911  smores  6401  smores2  6403  tfrlem5  6423  resixp  6843  ac6sfi  7021  difinfinf  7229  peano5nnnn  8040  peano5nni  9074  caucvgre  11407  rexanuz  11414  cau3lem  11540  isumclim3  11849  fsumiun  11903  pcfac  12788  ctinf  12916  strsetsid  12980  imasaddfnlemg  13261  tgcn  14795  tgcnp  14796  cnss2  14814  cncnp  14817  sslm  14834  metrest  15093  rescncf  15168  suplociccex  15212  limcresi  15253  nninfsellemeq  16153
  Copyright terms: Public domain W3C validator