| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssralv | Unicode version | ||
| Description: Quantification restricted to a subclass. (Contributed by NM, 11-Mar-2006.) |
| Ref | Expression |
|---|---|
| ssralv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3218 |
. . 3
| |
| 2 | 1 | imim1d 75 |
. 2
|
| 3 | 2 | ralimdv2 2600 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-ral 2513 df-in 3203 df-ss 3210 |
| This theorem is referenced by: iinss1 3977 poss 4389 sess2 4429 trssord 4471 funco 5358 funimaexglem 5404 isores3 5939 isoini2 5943 smores 6438 smores2 6440 tfrlem5 6460 resixp 6880 ac6sfi 7060 difinfinf 7268 peano5nnnn 8079 peano5nni 9113 caucvgre 11492 rexanuz 11499 cau3lem 11625 isumclim3 11934 fsumiun 11988 pcfac 12873 ctinf 13001 strsetsid 13065 imasaddfnlemg 13347 tgcn 14882 tgcnp 14883 cnss2 14901 cncnp 14904 sslm 14921 metrest 15180 rescncf 15255 suplociccex 15299 limcresi 15340 uspgr2wlkeq 16076 nninfsellemeq 16380 |
| Copyright terms: Public domain | W3C validator |