| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssralv | Unicode version | ||
| Description: Quantification restricted to a subclass. (Contributed by NM, 11-Mar-2006.) |
| Ref | Expression |
|---|---|
| ssralv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3187 |
. . 3
| |
| 2 | 1 | imim1d 75 |
. 2
|
| 3 | 2 | ralimdv2 2576 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-ral 2489 df-in 3172 df-ss 3179 |
| This theorem is referenced by: iinss1 3939 poss 4345 sess2 4385 trssord 4427 funco 5311 funimaexglem 5357 isores3 5884 isoini2 5888 smores 6378 smores2 6380 tfrlem5 6400 resixp 6820 ac6sfi 6995 difinfinf 7203 peano5nnnn 8005 peano5nni 9039 caucvgre 11292 rexanuz 11299 cau3lem 11425 isumclim3 11734 fsumiun 11788 pcfac 12673 ctinf 12801 strsetsid 12865 imasaddfnlemg 13146 tgcn 14680 tgcnp 14681 cnss2 14699 cncnp 14702 sslm 14719 metrest 14978 rescncf 15053 suplociccex 15097 limcresi 15138 nninfsellemeq 15951 |
| Copyright terms: Public domain | W3C validator |