ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssralv Unicode version

Theorem ssralv 3243
Description: Quantification restricted to a subclass. (Contributed by NM, 11-Mar-2006.)
Assertion
Ref Expression
ssralv  |-  ( A 
C_  B  ->  ( A. x  e.  B  ph 
->  A. x  e.  A  ph ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem ssralv
StepHypRef Expression
1 ssel 3173 . . 3  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
21imim1d 75 . 2  |-  ( A 
C_  B  ->  (
( x  e.  B  ->  ph )  ->  (
x  e.  A  ->  ph ) ) )
32ralimdv2 2564 1  |-  ( A 
C_  B  ->  ( A. x  e.  B  ph 
->  A. x  e.  A  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   A.wral 2472    C_ wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-ral 2477  df-in 3159  df-ss 3166
This theorem is referenced by:  iinss1  3924  poss  4329  sess2  4369  trssord  4411  funco  5294  funimaexglem  5337  isores3  5858  isoini2  5862  smores  6345  smores2  6347  tfrlem5  6367  resixp  6787  ac6sfi  6954  difinfinf  7160  peano5nnnn  7952  peano5nni  8985  caucvgre  11125  rexanuz  11132  cau3lem  11258  isumclim3  11566  fsumiun  11620  pcfac  12488  ctinf  12587  strsetsid  12651  imasaddfnlemg  12897  tgcn  14376  tgcnp  14377  cnss2  14395  cncnp  14398  sslm  14415  metrest  14674  rescncf  14736  suplociccex  14779  limcresi  14820  nninfsellemeq  15504
  Copyright terms: Public domain W3C validator