ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun Unicode version

Theorem ssun 3301
Description: A condition that implies inclusion in the union of two classes. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
ssun  |-  ( ( A  C_  B  \/  A  C_  C )  ->  A  C_  ( B  u.  C ) )

Proof of Theorem ssun
StepHypRef Expression
1 ssun3 3287 . 2  |-  ( A 
C_  B  ->  A  C_  ( B  u.  C
) )
2 ssun4 3288 . 2  |-  ( A 
C_  C  ->  A  C_  ( B  u.  C
) )
31, 2jaoi 706 1  |-  ( ( A  C_  B  \/  A  C_  C )  ->  A  C_  ( B  u.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 698    u. cun 3114    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129
This theorem is referenced by:  pwunss  4261  pwssunim  4262
  Copyright terms: Public domain W3C validator