ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun4 Unicode version

Theorem ssun4 3288
Description: Subclass law for union of classes. (Contributed by NM, 14-Aug-1994.)
Assertion
Ref Expression
ssun4  |-  ( A 
C_  B  ->  A  C_  ( C  u.  B
) )

Proof of Theorem ssun4
StepHypRef Expression
1 ssun2 3286 . 2  |-  B  C_  ( C  u.  B
)
2 sstr2 3149 . 2  |-  ( A 
C_  B  ->  ( B  C_  ( C  u.  B )  ->  A  C_  ( C  u.  B
) ) )
31, 2mpi 15 1  |-  ( A 
C_  B  ->  A  C_  ( C  u.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    u. cun 3114    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129
This theorem is referenced by:  ssun  3301  xpsspw  4716
  Copyright terms: Public domain W3C validator