ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun4 Unicode version

Theorem ssun4 3167
Description: Subclass law for union of classes. (Contributed by NM, 14-Aug-1994.)
Assertion
Ref Expression
ssun4  |-  ( A 
C_  B  ->  A  C_  ( C  u.  B
) )

Proof of Theorem ssun4
StepHypRef Expression
1 ssun2 3165 . 2  |-  B  C_  ( C  u.  B
)
2 sstr2 3033 . 2  |-  ( A 
C_  B  ->  ( B  C_  ( C  u.  B )  ->  A  C_  ( C  u.  B
) ) )
31, 2mpi 15 1  |-  ( A 
C_  B  ->  A  C_  ( C  u.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    u. cun 2998    C_ wss 3000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-v 2622  df-un 3004  df-in 3006  df-ss 3013
This theorem is referenced by:  ssun  3180  xpsspw  4563
  Copyright terms: Public domain W3C validator