ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun4 Unicode version

Theorem ssun4 3299
Description: Subclass law for union of classes. (Contributed by NM, 14-Aug-1994.)
Assertion
Ref Expression
ssun4  |-  ( A 
C_  B  ->  A  C_  ( C  u.  B
) )

Proof of Theorem ssun4
StepHypRef Expression
1 ssun2 3297 . 2  |-  B  C_  ( C  u.  B
)
2 sstr2 3160 . 2  |-  ( A 
C_  B  ->  ( B  C_  ( C  u.  B )  ->  A  C_  ( C  u.  B
) ) )
31, 2mpi 15 1  |-  ( A 
C_  B  ->  A  C_  ( C  u.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    u. cun 3125    C_ wss 3127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-un 3131  df-in 3133  df-ss 3140
This theorem is referenced by:  ssun  3312  xpsspw  4732
  Copyright terms: Public domain W3C validator