Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unssbd | Unicode version |
Description: If is contained in , so is . One-way deduction form of unss 3296. Partial converse of unssd 3298. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unssad.1 |
Ref | Expression |
---|---|
unssbd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unssad.1 | . . 3 | |
2 | unss 3296 | . . 3 | |
3 | 1, 2 | sylibr 133 | . 2 |
4 | 3 | simprd 113 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 cun 3114 wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 |
This theorem is referenced by: eldifpw 4455 ertr 6516 diffifi 6860 sumsplitdc 11373 fsum2dlemstep 11375 fsumabs 11406 fsumiun 11418 fprod2dlemstep 11563 |
Copyright terms: Public domain | W3C validator |