ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unssbd Unicode version

Theorem unssbd 3337
Description: If  ( A  u.  B ) is contained in  C, so is  B. One-way deduction form of unss 3333. Partial converse of unssd 3335. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
unssad.1  |-  ( ph  ->  ( A  u.  B
)  C_  C )
Assertion
Ref Expression
unssbd  |-  ( ph  ->  B  C_  C )

Proof of Theorem unssbd
StepHypRef Expression
1 unssad.1 . . 3  |-  ( ph  ->  ( A  u.  B
)  C_  C )
2 unss 3333 . . 3  |-  ( ( A  C_  C  /\  B  C_  C )  <->  ( A  u.  B )  C_  C
)
31, 2sylibr 134 . 2  |-  ( ph  ->  ( A  C_  C  /\  B  C_  C ) )
43simprd 114 1  |-  ( ph  ->  B  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    u. cun 3151    C_ wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166
This theorem is referenced by:  eldifpw  4508  ertr  6602  diffifi  6950  sumsplitdc  11575  fsum2dlemstep  11577  fsumabs  11608  fsumiun  11620  fprod2dlemstep  11765
  Copyright terms: Public domain W3C validator