ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwunss Unicode version

Theorem pwunss 4373
Description: The power class of the union of two classes includes the union of their power classes. Exercise 4.12(k) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
pwunss  |-  ( ~P A  u.  ~P B
)  C_  ~P ( A  u.  B )

Proof of Theorem pwunss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssun 3383 . . 3  |-  ( ( x  C_  A  \/  x  C_  B )  ->  x  C_  ( A  u.  B ) )
2 elun 3345 . . . 4  |-  ( x  e.  ( ~P A  u.  ~P B )  <->  ( x  e.  ~P A  \/  x  e.  ~P B ) )
3 vex 2802 . . . . . 6  |-  x  e. 
_V
43elpw 3655 . . . . 5  |-  ( x  e.  ~P A  <->  x  C_  A
)
53elpw 3655 . . . . 5  |-  ( x  e.  ~P B  <->  x  C_  B
)
64, 5orbi12i 769 . . . 4  |-  ( ( x  e.  ~P A  \/  x  e.  ~P B )  <->  ( x  C_  A  \/  x  C_  B ) )
72, 6bitri 184 . . 3  |-  ( x  e.  ( ~P A  u.  ~P B )  <->  ( x  C_  A  \/  x  C_  B ) )
83elpw 3655 . . 3  |-  ( x  e.  ~P ( A  u.  B )  <->  x  C_  ( A  u.  B )
)
91, 7, 83imtr4i 201 . 2  |-  ( x  e.  ( ~P A  u.  ~P B )  ->  x  e.  ~P ( A  u.  B )
)
109ssriv 3228 1  |-  ( ~P A  u.  ~P B
)  C_  ~P ( A  u.  B )
Colors of variables: wff set class
Syntax hints:    \/ wo 713    e. wcel 2200    u. cun 3195    C_ wss 3197   ~Pcpw 3649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651
This theorem is referenced by:  pwundifss  4375  pwunim  4376
  Copyright terms: Public domain W3C validator