Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pwunss | Unicode version |
Description: The power class of the union of two classes includes the union of their power classes. Exercise 4.12(k) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.) |
Ref | Expression |
---|---|
pwunss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun 3306 | . . 3 | |
2 | elun 3268 | . . . 4 | |
3 | vex 2733 | . . . . . 6 | |
4 | 3 | elpw 3572 | . . . . 5 |
5 | 3 | elpw 3572 | . . . . 5 |
6 | 4, 5 | orbi12i 759 | . . . 4 |
7 | 2, 6 | bitri 183 | . . 3 |
8 | 3 | elpw 3572 | . . 3 |
9 | 1, 7, 8 | 3imtr4i 200 | . 2 |
10 | 9 | ssriv 3151 | 1 |
Colors of variables: wff set class |
Syntax hints: wo 703 wcel 2141 cun 3119 wss 3121 cpw 3566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 |
This theorem is referenced by: pwundifss 4270 pwunim 4271 |
Copyright terms: Public domain | W3C validator |