ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwunss Unicode version

Theorem pwunss 4318
Description: The power class of the union of two classes includes the union of their power classes. Exercise 4.12(k) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
pwunss  |-  ( ~P A  u.  ~P B
)  C_  ~P ( A  u.  B )

Proof of Theorem pwunss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssun 3342 . . 3  |-  ( ( x  C_  A  \/  x  C_  B )  ->  x  C_  ( A  u.  B ) )
2 elun 3304 . . . 4  |-  ( x  e.  ( ~P A  u.  ~P B )  <->  ( x  e.  ~P A  \/  x  e.  ~P B ) )
3 vex 2766 . . . . . 6  |-  x  e. 
_V
43elpw 3611 . . . . 5  |-  ( x  e.  ~P A  <->  x  C_  A
)
53elpw 3611 . . . . 5  |-  ( x  e.  ~P B  <->  x  C_  B
)
64, 5orbi12i 765 . . . 4  |-  ( ( x  e.  ~P A  \/  x  e.  ~P B )  <->  ( x  C_  A  \/  x  C_  B ) )
72, 6bitri 184 . . 3  |-  ( x  e.  ( ~P A  u.  ~P B )  <->  ( x  C_  A  \/  x  C_  B ) )
83elpw 3611 . . 3  |-  ( x  e.  ~P ( A  u.  B )  <->  x  C_  ( A  u.  B )
)
91, 7, 83imtr4i 201 . 2  |-  ( x  e.  ( ~P A  u.  ~P B )  ->  x  e.  ~P ( A  u.  B )
)
109ssriv 3187 1  |-  ( ~P A  u.  ~P B
)  C_  ~P ( A  u.  B )
Colors of variables: wff set class
Syntax hints:    \/ wo 709    e. wcel 2167    u. cun 3155    C_ wss 3157   ~Pcpw 3605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607
This theorem is referenced by:  pwundifss  4320  pwunim  4321
  Copyright terms: Public domain W3C validator