ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun GIF version

Theorem ssun 3353
Description: A condition that implies inclusion in the union of two classes. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
ssun ((𝐴𝐵𝐴𝐶) → 𝐴 ⊆ (𝐵𝐶))

Proof of Theorem ssun
StepHypRef Expression
1 ssun3 3339 . 2 (𝐴𝐵𝐴 ⊆ (𝐵𝐶))
2 ssun4 3340 . 2 (𝐴𝐶𝐴 ⊆ (𝐵𝐶))
31, 2jaoi 718 1 ((𝐴𝐵𝐴𝐶) → 𝐴 ⊆ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 710  cun 3165  wss 3167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3171  df-in 3173  df-ss 3180
This theorem is referenced by:  pwunss  4334  pwssunim  4335
  Copyright terms: Public domain W3C validator