ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun GIF version

Theorem ssun 3363
Description: A condition that implies inclusion in the union of two classes. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
ssun ((𝐴𝐵𝐴𝐶) → 𝐴 ⊆ (𝐵𝐶))

Proof of Theorem ssun
StepHypRef Expression
1 ssun3 3349 . 2 (𝐴𝐵𝐴 ⊆ (𝐵𝐶))
2 ssun4 3350 . 2 (𝐴𝐶𝐴 ⊆ (𝐵𝐶))
31, 2jaoi 720 1 ((𝐴𝐵𝐴𝐶) → 𝐴 ⊆ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 712  cun 3175  wss 3177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-un 3181  df-in 3183  df-ss 3190
This theorem is referenced by:  pwunss  4351  pwssunim  4352
  Copyright terms: Public domain W3C validator