ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwssunim Unicode version

Theorem pwssunim 4286
Description: The power class of the union of two classes is a subset of the union of their power classes, if one class is a subclass of the other. One direction of Exercise 4.12(l) of [Mendelson] p. 235. (Contributed by Jim Kingdon, 30-Sep-2018.)
Assertion
Ref Expression
pwssunim  |-  ( ( A  C_  B  \/  B  C_  A )  ->  ~P ( A  u.  B
)  C_  ( ~P A  u.  ~P B
) )

Proof of Theorem pwssunim
StepHypRef Expression
1 ssequn2 3310 . . . . 5  |-  ( B 
C_  A  <->  ( A  u.  B )  =  A )
2 pweq 3580 . . . . . 6  |-  ( ( A  u.  B )  =  A  ->  ~P ( A  u.  B
)  =  ~P A
)
3 eqimss 3211 . . . . . 6  |-  ( ~P ( A  u.  B
)  =  ~P A  ->  ~P ( A  u.  B )  C_  ~P A )
42, 3syl 14 . . . . 5  |-  ( ( A  u.  B )  =  A  ->  ~P ( A  u.  B
)  C_  ~P A
)
51, 4sylbi 121 . . . 4  |-  ( B 
C_  A  ->  ~P ( A  u.  B
)  C_  ~P A
)
6 ssequn1 3307 . . . . 5  |-  ( A 
C_  B  <->  ( A  u.  B )  =  B )
7 pweq 3580 . . . . . 6  |-  ( ( A  u.  B )  =  B  ->  ~P ( A  u.  B
)  =  ~P B
)
8 eqimss 3211 . . . . . 6  |-  ( ~P ( A  u.  B
)  =  ~P B  ->  ~P ( A  u.  B )  C_  ~P B )
97, 8syl 14 . . . . 5  |-  ( ( A  u.  B )  =  B  ->  ~P ( A  u.  B
)  C_  ~P B
)
106, 9sylbi 121 . . . 4  |-  ( A 
C_  B  ->  ~P ( A  u.  B
)  C_  ~P B
)
115, 10orim12i 759 . . 3  |-  ( ( B  C_  A  \/  A  C_  B )  -> 
( ~P ( A  u.  B )  C_  ~P A  \/  ~P ( A  u.  B
)  C_  ~P B
) )
1211orcoms 730 . 2  |-  ( ( A  C_  B  \/  B  C_  A )  -> 
( ~P ( A  u.  B )  C_  ~P A  \/  ~P ( A  u.  B
)  C_  ~P B
) )
13 ssun 3316 . 2  |-  ( ( ~P ( A  u.  B )  C_  ~P A  \/  ~P ( A  u.  B )  C_ 
~P B )  ->  ~P ( A  u.  B
)  C_  ( ~P A  u.  ~P B
) )
1412, 13syl 14 1  |-  ( ( A  C_  B  \/  B  C_  A )  ->  ~P ( A  u.  B
)  C_  ( ~P A  u.  ~P B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 708    = wceq 1353    u. cun 3129    C_ wss 3131   ~Pcpw 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579
This theorem is referenced by:  pwunim  4288
  Copyright terms: Public domain W3C validator